RESUMO
Assessing the co-occurrence of multiple health risk factors in coastal ecosystems is challenging due to the complexity of multi-factor interactions and limited availability of simultaneously collected data. Understanding co-occurrence is particularly important for risk factors that may be associated with, or occur in similar environmental conditions. In marine ecosystems, the co-occurrence of harmful algal bloom toxins and bacterial pathogens within the genus Vibrio may impact both ecosystem and human health. This study examined the co-occurrence of Vibrio spp. and domoic acid (DA) produced by the harmful algae Pseudo-nitzschia by (1) analyzing existing California Department of Public Health monitoring data for V. parahaemolyticus and DA in oysters; and (2) conducting a 1-year seasonal monitoring of these risk factors across two Southern California embayments. Existing public health monitoring efforts in the state were robust for individual risk factors; however, it was difficult to evaluate the co-occurrence of these risk factors in oysters due to low number of co-monitoring instances between 2015 and 2020. Seasonal co-monitoring of DA and Vibrio spp. (V. vulnificus or V. parahaemolyticus) at two embayments revealed the co-occurrence of these health risk factors in 35% of sampled oysters in most seasons. Interestingly, both the overall detection frequency and co-occurrence of these risk factors were considerably less frequent in water samples. These findings may in part suggest the slow depuration of Vibrio spp. and DA in oysters as residual levels may be retained. This study expanded our understanding of the simultaneous presence of DA and Vibrio spp. in bivalves and demonstrates the feasibility of co-monitoring different risk factors from the same sample. Individual programs monitoring for different risk factors from the same sample matrix may consider combining efforts to reduce cost, streamline the process, and better understand the prevalence of co-occurring health risk factors.
Assuntos
Ecossistema , Ácido Caínico/análogos & derivados , Vibrio , Humanos , Monitoramento Ambiental , Coleta de DadosRESUMO
Blooms of the diatom genus Pseudo-nitzschia occur annually in the Southern California Bight (SCB), and domoic acid (DA) associated with these events can contaminate fisheries, presenting both human and wildlife health risks. Recent studies have suggested that marine sediments may act as a reservoir for DA, extending the risk of food web contamination long after water column blooms have ended. In this study, we conducted a regional assessment of the extent and magnitude of DA in the benthic environment, and monthly observations of sediments and benthic infauna at multiple stations over a 16-month period. DA was widespread in continental shelf sediments of the SCB. The toxin was detected in 54% of all shelf habitats sampled. Detectable concentrations ranged from 0.11 ng/g to 1.36 ng/g. DA was consistently detected in benthic infauna tissues over the monthly timeseries, while the DA concentrations in sediments during the same period were commonly below detection or at low concentrations. The presence of DA in the benthic environment did not always have an apparent water column source, raising the possibility of lateral transport, retention/preservation in sediments or undetected blooms in subsurface waters. In most cases, DA was detected in tissues but not in the co-located surface sediments. Coarse taxonomic sorting of the infauna revealed that the accumulation of DA varied among taxa. We observed that DA was widespread among lower trophic level organisms in this study, potentially acting as a persistent source of DA to higher trophic levels in the benthos.
Assuntos
Diatomáceas , Ácido Caínico , Cadeia Alimentar , Sedimentos Geológicos , Ácido Caínico/análogos & derivadosRESUMO
Diarrhetic shellfish toxins (DSTs) are produced by the marine dinoflagellate, Dinophysis, as well as select species of benthic Prorocentrum. The DSTs can bioaccumulate in shellfish and cause gastrointestinal illness when humans consume high levels of this toxin. Although not routinely monitored throughout the U.S., recent studies in Washington, Texas, and New York suggest DSTs may be widespread throughout U.S. coastal waters. This study describes a four-year time series (2013-2016) of Dinophysis concentration and DST level in California mussels (Mytilus californianus) from Santa Cruz Municipal Wharf (SCMW) in Monterey Bay, California. Results show a maximum Dinophysis concentration of 9404 cells/L during this study and suggest Dinophysis persists as a member of the background phytoplankton community throughout the year. In California mussels, DSTs were found at persistent low levels throughout the course of this study, and exceeded the FDA guidance level of 160 ng/g 19 out of 192 weeks sampled. Concentrations of Dinophysis alone are a positive but weak predictor of DST level in California mussels, and basic environmental variables (temperature, salinity, and nutrients) do not sufficiently explain variation in Dinophysis concentration at SCMW. This study demonstrates that Dinophysis in Monterey Bay are producing DSTs that accumulate in local shellfish throughout the year, occasionally reaching levels of concern.