RESUMO
Amino acids (AA) are an expensive nutritional components of poultry diets. Distillers dried grains with solubles (DDGS) is the primary co-product produced by the dry grind bioethanol industry, although new technologies are being implemented to produce high protein distillers dried grains (HP-DDG) and corn fermented protein (CFP), but data on their nutritive value in poultry are lacking. Two experiments (EXP) were conducted to determine the energy and AA digestibility of DDGS, HP-DDG, and CFP in poults in addition to a feeding trial to evaluate increasing dietary levels of HP-DDG and CFP on growth performance and intestinal characteristics. In EXP 1, 6 different DDGS sources were evaluated using poults to determine their nitrogen-corrected apparent metabolizable energy (AMEn) concentrations, and cecectomized roosters were used to determine their standardized ileal (SID) AA digestibility (SID-AA). In EXP 2, AMEn and SID-AA for HP-DDG and CFP were determined in young poults, and a feeding trial was conducted to evaluate growth performance and intestinal morphology and permeability of poults fed diets containing 7.5 and 15% HP-DDG or CFP from 1 to 32 d of age. In EXP 1, the AMEn concentration among the DDGS samples ranged from 2,530 to 3,573 kcal/kg DM but was not different (P = 0.57) among the samples, with an average SID for LYS of 66.6%. In EXP 2, different (P = 0.001) AMEn concentrations for HP-DDG and CFP were observed (3,114 and 3,760 kcal/kg DM, respectively), with the SID for LYS being 66.55 and 77.00% for HP-DDG and CFP, respectively. Including HP-DDG or CFP into the diet at 7.5 and 15% had no effect (P > 0.05) on growth, feed intake, or feed conversion. Neither co-product nor its inclusion rate affected intestinal morphology and permeability (P > 0.05). Overall, DDGS, HP-DDG, and CFP are excellent sources of AMEn and digestible AA, with dietary inclusion rates of up to 15% of HP-DDG or CFP having no impact on growth or intestinal characteristics.
Assuntos
Aminoácidos , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Digestão , Perus , Zea mays , Animais , Ração Animal/análise , Digestão/fisiologia , Digestão/efeitos dos fármacos , Aminoácidos/metabolismo , Zea mays/química , Dieta/veterinária , Perus/crescimento & desenvolvimento , Perus/fisiologia , Masculino , Metabolismo Energético , Grão Comestível/química , Intestinos/fisiologia , Fermentação , Distribuição Aleatória , Proteínas Alimentares/metabolismo , Proteínas Alimentares/análiseRESUMO
Introduction: There are no microbiological regulatory limits for viruses in animal feed and feed ingredients. Methods: A performance objective (PO) was proposed in this study to manufacture a spray-dried porcine plasma (SDPP) batch absent of any infectious viral particles. The PO levels of -7.0, -7.2, and -7.3 log TCID50/g in SDPP were estimated for three batch sizes (10, 15, and 20 tons). Results and discussion: A baseline survey on the presence of porcine epidemic diarrhea virus (PEDV) in raw porcine plasma revealed a concentration of -1.0 ± 0.6 log TCID50/mL as calculated using a TCID50-qPCR derived standard curve. The mean African swine fever virus (ASFV) concentration in raw plasma was estimated to be 0.6 log HAD50/mL (0.1-1.4, 95% CI) during a pre-clinical scenario (collected from asymptomatic and undetected viremic pigs). Different processing scenarios (baseline: spray-drying + extended storage) and baseline + ultraviolet (UV) radiation were evaluated to meet the PO levels proposed in this study. The baseline and baseline + UV processing scenarios were >95 and 100% effective in achieving the PO for PEDV by using different batch sizes. For the ASFV in SDPP during a pre-clinical scenario, the PO compliance was 100% for all processing scenarios evaluated. Further research is needed to determine the underlying mechanisms of virus inactivation in feed storage to further advance the implementation of feed safety risk management efforts globally.
RESUMO
Diet-mediated host-microbiota interplay is a key factor in optimizing the gut function and overall health of the host. Gaining insight into the biological mechanisms behind this relationship is fundamental to finding sustainable, environment-friendly feed solutions in livestock production systems. Here, we apply a multi-omics integration approach to elucidate sustainable diet-associated host-gut microbiota interactions in pigs and we demonstrate novel and biologically relevant host-microbe associations in the gut, driven by a rapeseed meal-based feed (RSF). Interestingly, RSF-diet promoted the abundance of segmented filamentous bacteria Candidatus Arthromitus that was associated with the maintenance of mucosal immunity in the ileum of pigs. In the colon, RSF diet affected host mRNA splicing functions, which may result in different host gene products, through host-microbiota associations, particularly with the Faecalibacterium population, and through the interaction of dietary components such as sinapic acid with the host cells. Moreover, telomere maintenance and organization functions that may determine the overall health of the host were upregulated and notably associated with Subdoligranulum population in the colon of RSF diet-fed pigs. This integrative multi-omics approach provides more insight into the diet-microbiota-host axis, and a better understanding of mechanisms and opportunities to find new strategies for modulating host health and potentially improving caloric and nutritional efficiency in animal production.
RESUMO
BACKGROUND: The particle structure of Emiliania huxleyi virus (EhV), an algal infecting member of nucleocytoplasmic large DNA viruses (NCLDVs), contains an outer lipid membrane envelope similar to that found in animal viruses such as African swine fever virus (ASFV). Despite both being enveloped NCLDVs, EhV and ASFV are known for their stability outside their host environment. METHOD: Here we report for the first time, the application of a viability qPCR (V-qPCR) method to describe the unprecedented and similar virion thermal stability of both EhV and ASFV. This result contradicts the cell culture-based assay method that suggests that virus "infectivity" is lost in a matter of seconds (for EhV) and minutes (for ASFV) at temperature greater than 50 °C. Confocal microscopy and analytical flow cytometry methods was used to validate the V-qPCR data for EhV. RESULTS: We observed that both EhV and ASFV particles has unprecedented thermal tolerances. These two NCLDVs are exceptions to the rule that having an enveloped virion anatomy is a predicted weakness, as is often observed in enveloped RNA viruses (i.e., the viruses causing Porcine Reproductive and Respiratory Syndrome (PRRS), COVID-19, Ebola, or seasonal influenza). Using the V-qPCR method, we confirm that no PRRSV particles were detectable after 20 min of exposure to temperatures up to 100 °C. We also show that the EhV particles that remain after 50 °C 20 min exposure was in fact still infectious only after the three blind passages in bioassay experiments. CONCLUSIONS: This study raises the possibility that ASFV is not always eliminated or contained after applying time and temperature inactivation treatments in current decontamination or biosecurity protocols. This observation has practical implications for industries involved in animal health and food security. Finally, we propose that EhV could be used as a surrogate for ASFV under certain circumstances.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Haptófitas , Suínos , Animais , Vírus da Febre Suína Africana/genética , Haptófitas/genética , Vírion , Reação em Cadeia da PolimeraseRESUMO
This study was designed to determine if feeding ß-hydroxy-ß-methylbutyrate (HMB) to pregnant mice would improve birth weight uniformity and growth performance of offspring. Dams (Agouti Avy) were assigned to one of four treatments: control (CON; n = 13), low-level HMB (LL; 3.5 mg/g; n = 14), high-level HMB (HL; 35 mg/g; n = 15), and low-level pulse dose fed from gestational days 6 to 10 (PUL; 3.5 mg/g; n = 14). Randomly selected dams (n = 27) were euthanized on gestational day 18 to collect placentae and pup weights. The remaining dams gave birth and lactated for 28 days. Dams only received HMB during gestation. Dietary HMB did not influence the performance of dams. Dietary treatment during gestation did not affect litter size or birth weight of pups. Variation was not different among treatments in terms of birth weight of offspring. Placental weights were not affected by treatments. Overall, growth performance of offspring after weaning was similar among all treatments. Body composition of offspring at 5 and 8 weeks of age was similar regardless of HMB treatment during gestation. In conclusion, dietary HMB supplementation in pregnant mice did not affect birth weight, variations in birth weight, or growth performance of offspring.
RESUMO
Freshwater quality and ecosystem impairment associated with excess phosphorus (P) loadings have led to federally mandated P reduction for certain organic waste streams. Phosphorus reduction from livestock and poultry feeds such as corn ethanol distillers' grains (DGs) presents a centralized strategy for reducing P loss from animal manurein agriculturally intensive states, but little is known about the actual distribution and geospatial P contributions of DGs as animal feed. Here, a county-level flow network for corn ethanol DGs was simulated in the United States to elucidate opportunities for P reduction and the potential for nutrient trading between centralized sources. Overall, the estimated P in DGs that was transferred to US animal feeding operations was nearly twice that present in all human waste prior to treatment. Simulation results suggest that Midwestern states account for an estimated 63% of domestic DG usage, with 72% utilized within the state of production. County-level data were also used to highlight the potential of using nutrient trading markets to incentivize P recovery from DGs at biorefineries within an agriculturally intensive watershed region in Iowa. In summary, corn ethanol biorefineries represent a key leverage point for sustainable P management at the national and local scales.
Assuntos
Ecossistema , Zea mays , Animais , Humanos , Etanol , Nutrientes , FósforoRESUMO
The objective of this study was to define changes in the intestinal metabolome and microbiome associated with growth performance of weaned pigs fed subtherapeutic concentrations of antibiotics. Three experiments with the same antibiotic treatments were conducted on the same research farm but in two different facilities (nursery and wean-finish) using pigs weaned at 20-days of age from the same source herd and genotype, and fed the same diets formulated without antibiotics (NC) or with 0.01% chlortetracycline and 0.01% sulfamethazine (AB). Pigs were weighed and feed disappearance was determined on days (d) 10, 21, and 42 post-weaning to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F). On d 42, one pig/pen was selected for blood and ileal and cecal content collection. Targeted and untargeted metabolomic profiles were determined in serum and cecal contents using liquid chromatography-mass spectrometry, and composition of bacterial communities in intestinal content samples was determined by sequencing the V4 region of the 16s rRNA gene. Metabolomics and microbiome data were analyzed using diverse multivariate and machine learning methods. Pigs fed AB had significantly greater (P < 0.05) overall ADG and ADFI compared with those fed NC, and pig body weight, ADG, and G:F were also significantly different (P < 0.05) between experiments. Differences (P < 0.05) in serum metabolome along with ileal and cecal microbiome beta diversity were observed between experiments, but there were no differences in microbiome alpha diversity between experiments or treatments. Bacteria from the families Clostridiaceae, Streptomycetaceae, Peptostreptomycetaceae, and Leuconostocaceae were significant biomarkers for the AB treatment. In addition, pigs fed AB had increased serum arginine, histidine, lysine, and phenylalanine concentrations compared with NC. Percentage error from a random forest analysis indicated that most of the variation (8% error) in the microbiome was explained by the facility where the experiments were conducted. These results indicate that facility had a greater effect on growth performance, metabolome, and microbiome responses than feeding diets containing subtherapeutic levels of antibiotics.
Assuntos
Antibacterianos , Microbioma Gastrointestinal , Suínos , Animais , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Dieta/veterinária , Bactérias/genética , Metaboloma , Ração Animal/análiseRESUMO
Soybean meal (SBM) is a premier source of protein for feeding food-producing animals. However, its nutritional value can be compromised by protein oxidation. In this study, a total of 54 sources of solvent extracted SBM (SSBM) and eight sources of mechanically extracted SBM (MSBM), collected from different commercial producers and geographic locations in the United States during the years 2020 and 2021, were examined by chemometric analysis to determine the extent of protein oxidation and its correlation with soybean oil extraction methods and non-protein components. The results showed substantial differences between SSBM and MSBM in the proximate analysis composition, protein carbonyl content, lipidic aldehydes, and antioxidants, as well as subtle differences between 2020 SSBM and 2021 SSBM samples in protein oxidation and moisture content. Correlation analysis further showed positive correlations between protein carbonyl content and multiple lipid parameters, including the ether extract, p-anisidine value, individual aldehydes, and total aldehydes. Among the antioxidants in SBM, negative correlations with protein carbonyl content were observed for total phenolic content and isoflavone glycoside concentrations, but not for Trolox equivalent antioxidant capacity (TEAC), α-tocopherol, and γ-tocopherol. Overall, soybean oil extraction methods, together with other factors such as enzyme treatment and environmental conditions, can significantly affect the proximate analysis composition, the protein and lipid oxidation status, and the antioxidant profile of SBM. Lipidic aldehydes and phenolic antioxidants play counteracting roles in the oxidation of soy protein. The range of protein carbonyl content measured in this study could serve as a reference to evaluate the protein quality of SBM from various sources used in animal feed.
RESUMO
No system nor standardized analytical procedures at commercial laboratories exist to facilitate and accurately measure potential viable virus contamination in feed ingredients and complete feeds globally. As a result, there is high uncertainty of the extent of swine virus contamination in global feed supply chains. Many knowledge gaps need to be addressed to improve our ability to prevent virus contamination and transmission in swine feed. This review summarizes the current state of knowledge involving: (1) the need for biosecurity protocols to identify production, processing, storage, and transportation conditions that may cause virus contamination of feed ingredients and complete feed; (2) challenges of measuring virus inactivation; (3) virus survival in feed ingredients during transportation and storage; (4) minimum infectious doses; (5) differences between using a food safety objective versus a performance objective as potential approaches for risk assessment in swine feed; (6) swine virus inactivation from thermal and irradiation processes, and chemical mitigants in feed ingredients and complete feed; (7) efficacy of virus decontamination strategies in feed mills; (8) benefits of functional ingredients, nutrients, and commercial feed additives in pig diets during a viral health challenge; and (9) considerations for improved risk assessment models of virus contamination in feed supply chains.
RESUMO
Traditionally, swine diets have been formulated to meet nutrient requirements at the lowest cost with little regard toward minimizing environmental impacts. The overall objective of this study was to evaluate the relative differences among four grower-finisher feeding programs, using precision diet formulation practices, on growth performance, carcass composition, nitrogen utilization efficiency, and environmental impacts. In experiment 1, four 4-phase growing-finishing feeding programs consisting of diets containing corn and soybean meal (CSBM), low protein CSBM supplemented with crystalline amino acids (LP), CSBM with 30% distillers dried grains with solubles (DDGS), and DDGS supplemented with crystalline Ile, Val, and Trp (DDGSâ +â IVT) were fed to 288 mixed sex pigs (initial body weight [BW]â =â 36.9â ±â 4.2 kg) for 12 wk to determine effects on growth performance and carcass characteristics. Pigs fed with CSBM had greater (Pâ <â 0.05) final BW than those fed with LP and DDGS, and greater gain efficiency than pigs fed with LP. Pigs fed with DDGSâ +â IVT tended to have greater (Pâ =â 0.06) backfat depth than pigs fed with DDGS, and less (Pâ <â 0.05) loin muscle area than pigs fed with CSBM. In experiment 2, nitrogen (N) and phosphorus (P) balance of barrows (nâ =â 32; initial BWâ =â 59.9â ±â 5.1 kg) fed with each of the phase-2 diets from experiment 1 was determined in a 12-d metabolism study (7 d adaptation and 5 d collection). Pigs fed with CSBM had a greater (Pâ <â 0.05) amount of N retained than pigs fed with other diets, but also had a greater (Pâ <â 0.05) amount of urinary N excretion and blood urea N than pigs fed with LP and DDGSâ +â IVT diets. Pigs fed with LP tended (Pâ =â 0.07) to have the greatest N utilization efficiency but the least (Pâ <â 0.05) P retained as a percentage of P intake among dietary treatments. Diet composition and data collected from experiments 1 and 2 were used to calculate life cycle assessment environmental impacts using Opteinics software (BASF, Lampertheim, Germany). The CSBM feeding program had the least impact on climate change, marine and freshwater eutrophication, and fossil resource use. The LP feeding program had the least impact on acidification, terrestrial eutrophication, and water use, while the DDGS feeding programs had the least impact on land use. These results indicate that feeding CSBM diets optimized growth performance and carcass composition while simultaneously reducing impacts on climate change, marine and freshwater eutrophication, and fossil resource use compared with the other feeding programs evaluated.
Developing and evaluating feeding programs that optimize growth performance and carcass composition, while minimizing cost, nutrient excretion in manure, and environmental impact is essential for achieving sustainable pork production systems. Four growing-finishing feeding programs consisting of typical corn-soybean meal (CSBM) diets, low protein CSBM diets containing supplemental crystalline amino acids (LP), CSBM diets containing 30% corn dried distillers grains with solubles (DDGS), and DDGS diets containing supplemental crystalline Ile, Val, and Trp were evaluated to compare their effects on growth performance, carcass composition, nitrogen and phosphorus utilization efficiency, and several environmental impact measures. Pigs fed CSBM diets had greater final body weight than those fed the LP and DDGS diets, and greater gain efficiency than pigs fed the LP diets, but there were no differences in the percentage of carcass lean among feeding programs. However, pigs fed the LP diets had the greatest nitrogen utilization efficiency and the least impact on acidification, terrestrial eutrophication, and water use among these feeding programs. The CSBM feeding program had the least impact on climate change, marine and freshwater eutrophication, and fossil resource use, while the DDGS feeding programs had the least impact on land use.
Assuntos
Carne de Porco , Carne Vermelha , Suínos , Animais , Tecido Adiposo/fisiologia , Composição Corporal , Ração Animal/análise , Dieta/veterinária , Dieta com Restrição de Proteínas/veterinária , Zea mays/química , Glycine max , Fenômenos Fisiológicos da Nutrição Animal , Meio Ambiente , Análise de Sistemas , Grão ComestívelRESUMO
The objective of this study was to determine the effects of Aspergillus oryzae prebiotic (AOP) on nutrient digestibility in growing pigs fed high-fiber diets. Eighteen growing barrows (initial body weight = 50.6 ± 4.9 kg) were surgically equipped with a T-cannula at the distal ileum. Corn and soybean meal-based diets were formulated with fiber from cereal grain byproducts corn (distillers dried grains with solubles, DDGS), rice (rice bran, RB), or wheat (wheat middlings, WM) to meet or exceed all nutrient requirements for 50 to 75 kg growing pigs. Three additional diets were formulated to contain 0.05% AOP supplemented at the expense of corn in the DDGS diet (DDGS + AOP), RB diet (RB + AOP), and WM diet (WM + AOP). All diets contained 0.5% of titanium dioxide as an indigestible marker. Pigs were allotted randomly to a triplicated 6 × 2 Youden square design with six diets and two successive periods. Ileal digesta and fecal samples were collected for 2 d after a 21-d adaptation period, and dry matter (DM), gross energy (GE), crude protein (CP), ether extract (EE), neutral detergent fiber (NDF), and ash were analyzed to calculate apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD). Standardized ileal digestibility (SID) of amino acids (AA) was calculated by correcting AID with basal endogenous AA losses from the same set of pigs. Pigs fed the DDGS+AOP diet had greater (P < 0.05) AID of EE compared with those fed the DDGS diet. However, supplementation of AOP did not (P > 0.05) affect AID of GE, DM, CP, NDF, ash or SID of AA of any high-fiber diet. Supplementation of 0.05% AOP increased (P < 0.05) ATTD of DM, GE, CP, NDF, and ash in DDGS, RB, and WM diets. Diet digestible energy was 35 kcal/kg greater (P < 0.05) in pigs fed AOP supplemented diets compared with those fed diets without AOP. In conclusion, supplementation of AOP increased ATTD of nutrients and energy value in high-fiber diets containing DDGS, RB, or WM.
RESUMO
Feeding thermally oxidized lipids to pigs has been shown to compromise growth and health, reduce energy digestibility, and disrupt lipid metabolism. However, the effects of feeding oxidized lipids on amino acid metabolism in pigs have not been well defined even though amino acids are indispensable for the subsistence of energy metabolism, protein synthesis, the antioxidant system, and many other functions essential for pig growth and health. In this study, oxidized corn oil (OCO)-elicited changes in amino acid homeostasis of nursery pigs were examined by metabolomics-based biochemical analysis. The results showed that serum and hepatic free amino acids and metabolites, including tryptophan, threonine, alanine, glutamate, and glutathione, as well as associated metabolic pathways, were selectively altered by feeding OCO, and more importantly, many of these metabolic events possess protective functions. Specifically, OCO activated tryptophan-nicotinamide adenosine dinucleotide (NAD+) synthesis by the transcriptional upregulation of the kynurenine pathway in tryptophan catabolism and promoted adenine nucleotide biosynthesis. Feeding OCO induced oxidative stress, causing decreases in glutathione (GSH)/oxidized glutathione (GSSG) ratio, carnosine, and ascorbic acid in the liver but simultaneously promoted antioxidant responses as shown by the increases in hepatic GSH and GSSG as well as the transcriptional upregulation of GSH metabolism-related enzymes. Moreover, OCO reduced the catabolism of threonine to α-ketobutyrate in the liver by inhibiting the threonine dehydratase (TDH) route. Overall, these protective metabolic events indicate that below a certain threshold of OCO consumption, nursery pigs are capable of overcoming the oxidative stress and metabolic challenges posed by the consumption of oxidized lipids by adjusting antioxidant, nutrient, and energy metabolism, partially through the transcriptional regulation of amino acid metabolism.
RESUMO
The objective of this study was to determine the potential biological mechanisms of improved growth performance associated with potential changes in the metabolic profiles and intestinal microbiome composition of weaned pigs fed various feed additives. Three separate 42 day experiments were conducted to evaluate the following dietary treatments: chlortetracycline and sulfamethazine (PC), herbal blends, turmeric, garlic, bitter orange extract, sweet orange extract, volatile and semi-volatile milk-derived substances, yeast nucleotide, and cell wall products, compared with feeding a non-supplemented diet (NC). In all three experiments, only pigs fed PC had improved (p < 0.05) ADG and ADFI compared with pigs fed NC. No differences in metabolome and microbiome responses were observed between feed additive treatments and NC. None of the feed additives affected alpha or beta microbiome diversity in the ileum and cecum, but the abundance of specific bacterial taxa was affected by some dietary treatments. Except for feeding antibiotics, none of the other feed additives were effective in improving growth performance or significantly altering the metabolomic profiles, but some additives (e.g., herbal blends and garlic) increased (p < 0.05) the relative abundance of potentially protective bacterial genera that may be beneficial during disease challenge in weaned pigs.
RESUMO
The objectives of this review were to summarize current knowledge of Zn in swine nutrition, environmental concerns, potential contribution to antimicrobial resistance, and explore the use of alternative feeding strategies to reduce Zn excretion in manure while capturing improvements in productivity. Zinc is a required nutrient for pigs but is commonly supplemented at concentrations that greatly exceed estimated requirements. Feeding pharmacological concentrations of Zn from ZnO to pigs for 1 to 2 weeks post-weaning reduces post-weaning diarrhea and improves growth performance. Feeding elevated dietary levels of Zn to sows during the last 30 days of gestation can reduce the incidence of low-birth-weight pigs and pre-weaning mortality. Most of the dietary Zn consumed by pigs is not retained in the body and is subsequently excreted in manure, which led several countries to impose regulations restricting dietary Zn concentrations to reduce environmental impacts. Although restricting Zn supplementation in swine diets is a reasonable approach for reducing environmental pollution, it does not allow capturing health and productivity benefits from strategic use of elevated dietary Zn concentrations. Therefore, we propose feeding strategies that allow strategic use of high dietary concentrations of Zn while also reducing Zn excretion in manure compared with current feeding practices.
RESUMO
African swine fever virus (ASFV) is a member of the nucleocytoplasmic large DNA viruses (NCLDVs) and is stable in a variety of environments, including animal feed ingredients as shown in previous laboratory experiments and simulations. Emiliania huxleyi virus (EhV) is another member of the NCLDVs, which has a restricted host range limited to a species of marine algae called Emiliania huxleyi. This algal NCLDV has many similar morphological and physical characteristics to ASFV thereby making it a safe surrogate, with results that are applicable to ASFV and suitable for use in real-world experiments. Here we inoculated conventional soybean meal (SBMC), organic soybean meal (SBMO), and swine complete feed (CF) matrices with EhV strain 86 (EhV-86) at a concentration of 6.6 × 107 virus g-1, and then transported these samples in the trailer of a commercial transport vehicle for 23 days across 10,183 km covering 29 states in various regions of the United States. Upon return, samples were evaluated for virus presence and viability using a previously validated viability qPCR (V-qPCR) method. Results showed that EhV-86 was detected in all matrices and no degradation in EhV-86 viability was observed after the 23-day transportation event. Additionally, sampling sensitivity (we recorded unexpected increases, as high as 49% in one matrix, when virus was recovered at the end of the sampling period) rather than virus degradation best explains the variation of virus quantity observed after the 23-day transport simulation. These results demonstrate for the first time that ASFV-like NCLDVs can retain viability in swine feed matrices during long-term transport across the continental United States.
RESUMO
This study was conducted to determine greenhouse gas (GHG) emissions, water consumption, land use, as well as nitrogen (N), phosphorus (P), and carbon (C) balance of five diet formulation strategies and feeding programs for growing-finishing pigs (25-130 kg body weight) in the three spatially explicit geographic regions where the majority of U.S. pork production occurs. Feeding programs evaluated consisted of 1) standard corn-soybean meal (CSBM) diets, 2) CSBM containing 15% corn distillers dried grains with solubles (DDGS), 3) CSBM with 8.6% thermally processed supermarket food waste (FW), 4) low crude protein CSBM diets supplemented with synthetic amino acids (SAA), and 5) CSBM with phytase enzyme (PHY) added at 600 FTU (phytase units)/kg of diet. An attributional Life Cycle Assessment approach using a highly specialized, spatially explicit Food System Supply-Chain Sustainability (FoodS3) model was used to quantify GHG emissions, water consumption, and land use of corn, soybean meal, and DDGS based on county level sourcing. The DDGS, FW, and SAA feeding programs had less estimated N and P intake and excretion than CSBM, and the PHY feeding program provided the greatest reduction in P excretion. The FW feeding program had the least overall GHG emissions (319.9 vs. 324.6 to 354.1 kg CO2 equiv./market hog), land use (331.5 vs. 346.5 to 385.2 m2/market hog), and water consumption (7.64 vs. 7.70 to 8.30 m3/market hog) among the alternatives. The DDGS feeding program had the greatest GHG emissions (354.1 kg CO2 equiv./market hog) among all programs but had less impacts on water consumption (7.70 m3) and land use (346.5 m2) per market hog than CSBM and PHY. The SAA feeding program provided a 6.5-7.4% reduction in land use impacts compared with CSBM and PHY, respectively. Regardless of feeding program, the Midwest had the least contributions to GHG emissions and land use attributed to feed and manure among regions. Water consumption per market hog associated with feeding programs was much greater in the Southwest (59.66-63.58 m3) than in the Midwest (4.45-4.88 m3) and Mid-Atlantic (1.85-2.14 m3) regions. Results show that diet composition and U.S. geographic region significantly affect GHG emissions, water consumption, and land use of pork production systems, and the potential use of thermally processed supermarket food waste at relatively low diet inclusion rates (<10%) can reduce environmental impacts compared with other common feeding strategies.
Very few studies have been conducted to determine the differences in environmental impacts based on the diet composition of growing-finishing swine feeding programs across major pork production regions in the United States. Therefore, the objective of this study was to determine and compare greenhouse gas (GHG) emissions, water consumption, land use, as well as nitrogen (N), phosphorus (P), and carbon (C) balance of five diet formulation strategies and feeding programs for growing-finishing pigs (25130 kg body weight) in the three spatially explicit U.S. pork production regions. The corn dried distillers grains with solubles (DDGS), food waste (FW), and low protein-synthetic amino acid (SAA) diets had less estimated N and P excretion compared with corn-soybean meal (CSBM) diets, and the addition of phytase (PHY) to CSBM diets resulted in the greatest reduction in P excretion among feeding programs. Adding FW to diets resulted in the least overall greenhouse gas emissions, water consumption, and land use compared with all other feeding programs, and land use was less for the DDGS and SAA feeding programs than CSBM and PHY feeding programs. The Midwest had the least GHG emissions and land use impact compared with other regions, while the Southwest region had the greatest water consumption associated with feeding programs.
Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Suínos , Animais , Estados Unidos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Zea mays , Glycine max , Grão Comestível , Meio AmbienteRESUMO
Modern agri-food systems generate large amounts of crop-based biomass that are unfit for direct human consumption but potentially suitable for livestock feeding in production of meats, milk, and eggs. This study aims to develop novel feeds for cattle from some of those biomass materials through the natural microbial-driven processes of ensiling. Fruit and vegetables resembling supermarket discards were ensiled alone or co-ensiled with corn crop residues, mushroom wastes, etc. via laboratory experiments. Longitudinal sample analyses showed that (co-)ensiling was successful, with pH and fermentation acids changing rapidly into desirable ranges (pH < 4.5, the acids 5-13% DM with lactic acid dominating). The (co-)ensiled products had key nutritional parameters comparable to those of good quality forages commonly used on dairy farms. Additionally, in vitro incubation experiments indicated that the ensiled products could substitute certain conventional feeds while maintaining diet digestibility. Findings from this pilot study provide a proof of principle that quality novel feeds for cattle can be generated by co-ensiling food discards and low-value crop residues. Future research and animal feeding trials to demonstrate the utility of this approach can help societies more effectively utilize untapped biomass resources, strengthening the regenerative capacity of agri-food systems towards a more sustainable food future.
Assuntos
Leite , Silagem , Animais , Biomassa , Bovinos , Digestão , Fermentação , Humanos , Gado , Projetos Piloto , Silagem/análise , Zea mays/químicaRESUMO
Feeding high-fiber (HF) coproducts to grow-finish pigs as a cost-saving practice could compromise growth performance, while the inclusion of antibiotic growth promoters (AGPs) may improve it. The hindgut is a shared site of actions between fiber and AGPs. However, whether the metabolic interactions between them could occur in the digestive tract of pigs and then become detectable in feces have not been well-examined. In this study, wheat middling (WM), a HF coproduct, and bacitracin, a peptide antibiotic (AB), were fed to 128 grow-finish pigs for 98 days following a 2 × 2 factorial design, including antibiotic-free (AF) + low fiber (LF); AF + HF; AB + LF, and AB + HF, for growth and metabolic responses. The growth performance of the pigs was compromised by HF feedings but not by AB. A metabolomic analysis of fecal samples collected on day 28 of feeding showed that WM elicited comprehensive metabolic changes, especially in amino acids, fatty acids, and their microbial metabolites, while bacitracin caused selective metabolic changes, including in secondary bile acids. Limited metabolic interactions occurred between fiber and AB treatments. Moreover, the correlations between individual fecal metabolites and growth support the usage of fecal metabolome as a source of biomarkers for monitoring and predicting the metabolic performance of grow-finish pigs.