Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Water Resour Assoc ; 56(1): 82-99, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32801611

RESUMO

A goal in urban water management is to reduce the volume of stormwater runoff in urban systems and the effect of combined sewer overflows into receiving waters. Effective management of stormwater runoff in urban systems requires an accounting of various components of the urban water balance. To that end, precipitation, evapotranspiration, sewer flow, and groundwater in a 3.40-hectare sewershed in Detroit, Michigan were monitored to capture the response of the sewershed to stormwater flow prior to implementation of stormwater control measures. Monitoring results indicate that stormflow in sewers was not initiated unless rain depth was 3.6 mm or greater. Evapotranspiration removed more than 40 percent of the precipitation in the sewershed whereas pipe flow accounted for 19 to 85 percent of the losses. Flows within the sewer that could not be associated with direct precipitation indicate an unexpected exchange of water between the leaky sewer and the groundwater system, pathways through abandoned or failing residential infrastructure, or a combination of both. Groundwater data indicate that groundwater flows into the leaky combined sewer rather than out. This research demonstrates that urban hydrologic fluxes can modulate the local water cycle in complex ways which affect the efficiency of the wastewater system, effectiveness of stormwater management, and, ultimately, public health.

2.
Environ Res Lett ; 15(11)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33628329

RESUMO

Urban development has driven extensive modification of the global landscape. This shift in land use and land cover alters ecological functioning, and thereby affects sustainable management agendas. Urbanization fundamentally reshapes the soils that underlay landscapes, and throughout the soil profile, extends impacts of urbanization far below the landscape surface. The impacts of urbanization on deeper soils that are beyond the reach of regular land management are largely unknown, and validation of general theories of convergent ecosystem properties are thwarted by a dearth of both level of measurement effort and the substantial heterogeneity in soils and urban landscapes. Here, we examined two soil properties with strong links to ecological functioning-carbon and mineral-fraction particle size-measured in urban soils, and compared them to their pre-urbanization conditions across a continental gradient encompassing global soil diversity. We hypothesized that urbanization drove convergence of soils properties from heterogeneous pre-urban conditions towards homogeneous urban conditions. Based on our observations, we confirm the hypothesis. Both soil carbon and particle size converged toward an intermediate value in the full data distribution, from pre-urban to urban conditions. These outcomes in urban soils were observed to uniformly be fine textured soils with overall lower carbon content. Although these properties are desirable for supporting urban infrastructure (e.g. buildings, pipes), they constrain the potential to render ecosystem services. Since soil profile texture and carbon content were convergent and observed across 11 cities, we suggest that these property profiles can be used as a universal urban soil profile to: 1) provide a clear prediction for how urbanization will shift soil properties from pre-urban conditions, 2) facilitate the adoption of commonly-accepted soil profiles for process models, and 3) offer a reference point to test against urban management strategies and how they impact soil resources.

3.
Hydrol Process ; 33(26): 3349-3363, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32831472

RESUMO

Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration-excess (where precipitation rate exceeds infiltration capacity) or saturation-excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one-dimensional model that distinguishes between infiltration-excess overland flow (IEOF) and saturation-excess overland flow (SEOF) using Green-Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low- and high-intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth-weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high-intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.

4.
Proc Natl Acad Sci U S A ; 115(26): 6751-6755, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891715

RESUMO

Soils support terrestrial ecosystem function and therefore are critical urban infrastructure for generating ecosystem services. Urbanization processes modify ecosystem function by changing the layers of soils identified as soil horizons. Soil horizons are integrative proxies for suites of soil properties and as such can be used as an observable unit to track modifications within soil profiles. Here, in an analysis of 11 cities representing 10 of the 12 soil orders, we show that urban soils have ∼50% fewer soil horizons than preurban soils. Specifically, B horizons were much less common in urban soils and were replaced by a deepening of A horizons and a shallowing of C horizons. This shift is likely due to two processes: (i) local management, i.e., soil removal, mixing, and fill additions, and (ii) soil development timelines, i.e., urbanized soils are young and have had short time periods for soil horizon development since urbanization (decades to centuries) relative to soil formation before urbanization (centuries to millennia). Urban soils also deviated from the standard A-B-C horizon ordering at a much greater frequency than preurban soils. Overall, our finding of common shifts in urban soil profiles across soil orders and cities suggests that urban soils may function differently from their preurban antecedents. This work introduces a basis for improving our understanding of soil modifications by urbanization and its potential effects on ecosystem functioning and thereby has implications for ecosystem services derived from urban landscapes.


Assuntos
Ecossistema , Solo , Urbanização , Cidades , Bases de Dados Factuais
5.
Environ Pollut ; 236: 247-256, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414346

RESUMO

Recent studies have indicated that urban streets can be hotspots for emissions of methane (CH4) from leaky natural gas lines, particularly in cities with older natural gas distribution systems. The objective of the current study was to determine whether leaking sewer pipes could also be a source of street-level CH4 as well as nitrous oxide (N2O) in Cincinnati, Ohio, a city with a relatively new gas pipeline network. To do this, we measured the carbon (δ13C) and hydrogen (δ2H) stable isotopic composition of CH4 to distinguish between biogenic CH4 from sewer gas and thermogenic CH4 from leaking natural gas pipelines and measured CH4 and N2O flux rates and concentrations at sites from a previous study of street-level CH4 enhancements (77 out of 104 sites) as well as additional sites found through surveying sewer grates and utility manholes (27 out of 104 sites). The average isotopic signatures for δ13C-CH4 and δ2H-CH4 were -48.5‰ ± 6.0‰ and -302‰ ± 142‰. The measured flux rates ranged from 0.0 to 282.5 mg CH4 day-1 and 0.0-14.1 mg N2O day-1 (n = 43). The average CH4 and N2O concentrations measured in our study were 4.0 ±â€¯7.6 ppm and 392 ±â€¯158 ppb, respectively (n = 104). 72% of sites where fluxes were measured were a source of biogenic CH4. Overall, 47% of the sampled sites had biogenic CH4, while only 13% of our sites had solely thermogenic CH4. The other sites were either a source of both biogenic and thermogenic CH4 (13%), and a relatively large portion of sites had an unresolved source (29%). Overall, this survey of emissions across a large urban area indicates that production and emission of biogenic CH4 and N2O is considerable, although CH4 fluxes are lower than those reported for cities with leaky natural gas distribution systems.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metano/análise , Óxido Nitroso/análise , Gerenciamento de Resíduos/métodos , Águas Residuárias/química , Cidades , Gás Natural/análise , Ohio
6.
Sustainability ; 10(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32542114

RESUMO

Many cities are experiencing long-term declines in population and economic activity. As a result, frameworks for urban sustainability need to address the unique challenges and opportunities of such shrinking cities. Shrinking, particularly in the U.S., has led to extensive vacant land. The abundance of vacant land reflects a loss of traditional urban amenities, economic opportunity, neighbors, businesses, and even basic city services and often occurs in neighborhoods with socially and economically vulnerable or underserved populations. However, vacant land also provides opportunities, including the space to invest in green infrastructure that can provide ecosystem services and support urban sustainability. Achieving desirable amenities that provide ecosystem services from vacant land is the central tenet of a recent urban sustainability framework termed ecology for the shrinking city. An agroecological approach could operationalize ecology for the shrinking city to both manage vacancy and address ecosystem service goals. Developing an agroecology in shrinking cities not only secures provisioning services that use an active and participatory approach of vacant land management but also transforms and enhances regulating and supporting services. The human and cultural dimensions of agroecology create the potential for social-ecological innovations that can support sustainable transformations in shrinking cities. Overall, the strength of agroecological principles guiding a green infrastructure strategy stems from its explicit focus on how individuals and communities can shape their environment at multiple scales to produce outcomes that reflect their social and cultural context. Specifically, the shaping of the environment provides a pathway for communities to build agency and manage for resilience in urban social-ecological systems. Agroecology for the shrinking city can support desirable transformations, but to be meaningful, we recognize that it must be part of a greater strategy that addresses larger systemic issues facing shrinking cities and their residents.

7.
Sustainability ; 10(10): 1-3584, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32832105

RESUMO

Even if urban catchments are adequately drained by sewer infrastructures, flooding hotspots develop where ongoing development and poor coordination among utilities conspire with land use and land cover, drainage, and rainfall. We combined spatially explicit land use/land cover data from Luohe City (central China) with soil hydrology (as measured, green space hydraulic conductivity), topography, and observed chronic flooding to analyze the relationships between spatial patterns in pervious surface and flooding. When compared to spatial-structural metrics of land use/cover where flooding was commonly observed, we found that some areas expected to remain dry (given soil and elevation characteristics) still experienced localized flooding, indicating hotspots with overwhelmed sewer infrastructure and a lack of pervious surfaces to effectively infiltrate and drain rainfall. Next, we used curve numbers to represent the composite hydrology of different land use/covers within both chronic flooding and dry (non-flooding) circles of 750 m diameter, and local design storms to determine the anticipated average proportion of runoff. We found that dry circles were more permeable (curve number (mean ± std. error) = 74 ± 2, n = 25) than wetter, flooded circles (curve number = 87 ± 1). Given design storm forcing (20, 50, 100 years' recurrence interval, and maximum anticipated storm depths), dry points would produce runoff of 26 to 35 percent rainfall, and wet points of 52 to 61 percent of applied rainfall. However, we estimate by simulation that runoff reduction benefits would decline once infiltration-excess (Hortonian) runoff mechanisms activate for storms with precipitation rates in excess of an average of 21 mm/h, contingent on antecedent moisture conditions. Our spatial metrics indicate that larger amounts and patches of dispersed green space mitigate flooding risk, while aggregating buildings (roofs) and green space into larger, separate areas exacerbates risk.

8.
Landsc Urban Plan ; 162: 167-177, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30220756

RESUMO

Urban impervious surfaces convert precipitation to stormwater runoff, which causes water quality and quantity problems. While traditional stormwater management has relied on gray infrastructure such as piped conveyances to collect and convey stormwater to wastewater treatment facilities or into surface waters, cities are exploring green infrastructure to manage stormwater at its source. Decentralized green infrastructure leverages the capabilities of soil and vegetation to infiltrate, redistribute, and otherwise store stormwater volume, with the potential to realize ancillary environmental, social, and economic benefits. To date, green infrastructure science and practice have largely focused on infiltration-based technologies that include rain gardens, bioswales, and permeable pavements. However, a narrow focus on infiltration overlooks other losses from the hydrologic cycle, and we propose that arboriculture - the cultivation of trees and other woody plants - deserves additional consideration as a stormwater control measure. Trees interact with the urban hydrologic cycle by intercepting incoming precipitation, removing water from the soil via transpiration, enhancing infiltration, and bolstering the performance of other green infrastructure technologies. However, many of these interactions are inadequately understood, particularly at spatial and temporal scales relevant to stormwater management. As such, the reliable use of trees for stormwater control depends on improved understanding of how and to what extent trees interact with stormwater, and the context-specific consideration of optimal arboricultural practices and institutional frameworks to maximize the stormwater benefits trees can provide.

9.
Infrastructures (Basel) ; 2(3)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32832712

RESUMO

Infiltrative rain gardens can add retention capacity to sewersheds, yet factors contributing to their capacity for detention and redistribution of stormwater runoff are dynamic and often unverified. Over a four-year period, we tracked whole-system water fluxes in a two-tier rain garden network and assessed near-surface hydrology and soil development across construction and operational phases. The monitoring data provided a quantitative basis for determining effectiveness of this stormwater control measure. Based on 233 monitored warm-season rainfall events, nearly half of total inflow volume was detained, with 90 percent of all events producing no flow to the combined sewer. For the events that did result in flow to the combined sewer system, the rain garden delayed flows for an average of 5.5 h. Multivariate analysis of hydrologic fluxes indicated that total event rainfall depth was a predominant hydrologic driver for network outflow during both phases, with average event intensity and daily evapotranspiration as additional, independent factors in regulating retention in the operational phase. Despite sediment loads that can clog the rooting zone, and overall lower-than-design infiltration rates, tradeoffs among soil profile development and hydrology apparently maintained relatively high overall retention effectiveness. Overall, our study identified factors relevant to regulation of retention capacity of a rain garden network. These factors may be generalizable, and guide improvement of new or existing rain garden designs.

10.
J Environ Manage ; 183(Pt 2): 431-441, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27372737

RESUMO

Green infrastructure installations such as rain gardens and bioswales are increasingly regarded as viable tools to mitigate stormwater runoff at the parcel level. The use of adaptive management to implement and monitor green infrastructure projects as experimental attempts to manage stormwater has not been adequately explored as a way to optimize green infrastructure performance or increase social and political acceptance. Efforts to improve stormwater management through green infrastructure suffer from the complexity of overlapping jurisdictional boundaries, as well as interacting social and political forces that dictate the flow, consumption, conservation and disposal of urban wastewater flows. Within this urban milieu, adaptive management-rigorous experimentation applied as policy-can inform new wastewater management techniques such as the implementation of green infrastructure projects. In this article, we present a narrative of scientists and practitioners working together to apply an adaptive management approach to green infrastructure implementation for stormwater management in Cleveland, Ohio. In Cleveland, contextual legal requirements and environmental factors created an opportunity for government researchers, stormwater managers and community organizers to engage in the development of two distinct sets of rain gardens, each borne of unique social, economic and environmental processes. In this article we analyze social and political barriers to applying adaptive management as a framework for implementing green infrastructure experiments as policy. We conclude with a series of lessons learned and a reflection on the prospects for adaptive management to facilitate green infrastructure implementation for improved stormwater management.


Assuntos
Jardins , Chuva , Cidades , Conservação dos Recursos Naturais/métodos , Jardins/economia , Ohio , Organizações , Movimentos da Água
11.
Bioscience ; 66(11): 965-973, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32606477

RESUMO

This article brings together the concepts of shrinking cities-the hundreds of cities worldwide experiencing long-term population loss-and ecology for the city. Ecology for the city is the application of a social-ecological understanding to shaping urban form and function along sustainable trajectories. Ecology for the shrinking city therefore acknowledges that urban transformations to sustainable trajectories may be quite different in shrinking cities as compared with growing cities. Shrinking cities are well poised for transformations, because shrinking is perceived as a crisis and can mobilize the social capacity to change. Ecology is particularly well suited to contribute solutions because of the extent of vacant land in shrinking cities that can be leveraged for ecosystem-services provisioning. A crucial role of an ecology for the shrinking city is identifying innovative pathways that create locally desired amenities that provide ecosystem services and contribute to urban sustainability at multiple scales.

12.
Environ Sci Technol ; 49(5): 2724-32, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25660388

RESUMO

Aquatic ecosystems are sensitive to the modification of hydrologic regimes, experiencing declines in stream health as the streamflow regime is altered during urbanization. This study uses streamflow records to quantify the type and magnitude of hydrologic changes across urbanization gradients in nine U.S. cities (Atlanta, GA, Baltimore, MD, Boston, MA, Detroit, MI, Raleigh, NC, St. Paul, MN, Pittsburgh, PA, Phoenix, AZ, and Portland, OR) in two physiographic settings. Results indicate similar development trajectories among urbanization gradients, but heterogeneity in the type and magnitude of hydrologic responses to this apparently uniform urban pattern. Similar urban patterns did not confer similar hydrologic function. Study watersheds in landscapes with level slopes and high soil permeability had less frequent high-flow events, longer high-flow durations, lower flashiness response, and lower flow maxima compared to similarly developed watersheds in landscape with steep slopes and low soil permeability. Our results suggest that physical characteristics associated with level topography and high water-storage capacity buffer the severity of hydrologic changes associated with urbanization. Urbanization overlain upon a diverse set of physical templates creates multiple pathways toward hydrologic impairment; therefore, we caution against the use of the urban homogenization framework in examining geophysically dominated processes.


Assuntos
Ecossistema , Hidrologia , Rios , Urbanização , Solo , Estados Unidos
13.
Water Sci Technol ; 70(11): 1746-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25500463

RESUMO

As regulatory pressure to reduce the environmental impact of urban stormwater intensifies, US municipalities increasingly seek a dedicated source of funding for stormwater programs, such as a stormwater utility. In rare instances, single family residences are eligible for utility discounts for installing green infrastructure. This study examined the hydrologic and economic efficacy of four such programs at the parcel scale: Cleveland (OH), Portland (OR), Fort Myers (FL), and Lynchburg (VA). Simulations were performed to model the reduction in stormwater runoff by implementing bioretention on a typical residential property according to extant administrative rules. The EPA National Stormwater Calculator was used to perform pre- vs post-retrofit comparisons and to demonstrate its ease of use for possible use by other cities in utility planning. Although surface slope, soil type and infiltration rate, impervious area, and bioretention parameters were different across cities, our results suggest that modeled runoff volume was most sensitive to percent of total impervious area that drained to the bioretention cell, with soil type the next most important factor. Findings also indicate a persistent gap between the percentage of annual runoff reduced and the percentage of fee reduced.


Assuntos
Meio Ambiente , Habitação , Modelos Teóricos , Engenharia Sanitária/economia , Cidades , Conservação dos Recursos Naturais , Chuva , Engenharia Sanitária/métodos , Solo , Estados Unidos , Movimentos da Água
14.
PLoS One ; 9(1): e85011, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465468

RESUMO

Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km(2) Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007-2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.


Assuntos
Biota , Conservação dos Recursos Naturais , Chuva , Características de Residência , Rios , População Suburbana , Qualidade da Água , Análise de Variância , Animais , Biomassa , Filtração , Geografia , Invertebrados/fisiologia , Ohio , Movimentos da Água
16.
Environ Manage ; 42(2): 344-59, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18446406

RESUMO

In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.


Assuntos
Cidades , Conservação dos Recursos Naturais/métodos , Política Pública , Chuva , Eliminação de Resíduos Líquidos/métodos , Austrália , Formulação de Políticas , Estados Unidos , Abastecimento de Água
17.
J Environ Qual ; 32(6): 2132-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14674535

RESUMO

Earthworms affect soil structure and the movement of agrochemicals. Yet, there have been few field-scale studies that quantify the effect of earthworms on dissolved nitrogen fluxes in agroecosystems. We investigated the influence of semi-annual earthworm additions on leachate production and quality in different row crop agroecosystems. Chisel-till corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation (CT) and ridge-till corn-soybean-wheat (Triticum aestivum L.) rotation (RT) plots were arranged in a complete randomized block design (n = 3) with earthworm treatments (addition and ambient) as subplots where zero-tension lysimeters were placed 45 cm below ground. We assessed earthworm populations semi-annually and collected leachate biweekly over a three-year period and determined leachate volume and concentrations of total inorganic nitrogen (TIN) and dissolved organic nitrogen (DON). Abundance of deep-burrowing earthworms was increased in addition treatments over ambient and for both agroecosystems. Leachate loss was similar among agroecosystems, but earthworm additions increased leachate production in the range of 4.5 to 45.2% above ambient in CT cropping. Although leachate TIN and DON concentrations were generally similar between agroecosystems or earthworm treatments, transport of TIN was significantly increased in addition treatments over ambient in CT cropping due to increased leachate volume. Losses of total nitrogen in leachate loadings were up to approximately 10% of agroecosystem N inputs. The coincidence of (i) soluble N production and availability and (ii) preferential leaching pathways formed by deep-burrowing earthworms thereby increased N losses from the CT agroecosystem at the 45-cm depth. Processing of N compounds and transport in soil water from RT cropping were more affected by management phase and largely independent of earthworm activity.


Assuntos
Nitrogênio/metabolismo , Oligoquetos/metabolismo , Agricultura/métodos , Animais , Ecossistema , Humanos , Oligoquetos/fisiologia , Densidade Demográfica , Glycine max/metabolismo , Triticum/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA