Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Environ Manage ; 348: 119306, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839204

RESUMO

Research studies on nutrient content and microbial communities after the application of organic manure have been reported, while available information about multi-interaction mechanisms of nutrient stoichiometry and microbial succession in soil aggregates remains limited. This work conducted a 10-year field experiment amended with cow manure (1.5 t/ha), during which the application of organic manure stimulated the fragmentation of soil macro-aggregates (>5 mm) and the agglomeration of soil micro-aggregates (<0.25 mm). Hence, the proportion of medium-size aggregates (0.25-5 mm) was increased in bulk soil, and there was an insignificant difference in the stability of soil aggregates. Meanwhile, the application of organic manure increased soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP) in all soil aggregate fractions. SOC, TN and TP were higher in micro-aggregates (<0.25 mm) after the application of organic manure, thus the dominating phylum of bacteria and fungi was more abundance in micro-aggregates due to the increase in nutrient level. During the organic fertilization process, fungal communities significantly changed because the variation of carbon-to-nitrogen ratio (C:N) in soil aggregates. Cultivated farmland in Northeast China showed a considerable capacity to sequestrate SOC during the organic fertilization process, but nitrogen may be a primary macro-element limiting soil productivity. Theoretically, organic manure amended with nitrogen fertilizer could be an effective measure to maintain microbial diversity and crop productivity in agro-ecosystems in Northeast China.


Assuntos
Microbiota , Solo , Carbono/análise , Esterco , Fertilizantes/análise , Nitrogênio/análise , China , Fertilização , Microbiologia do Solo , Agricultura
2.
Environ Sci Pollut Res Int ; 30(43): 97977-97989, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37603250

RESUMO

The application of nitrogen (N) fertilizer aggravates the nutrient runoff loss from paddy, causing serious agricultural non-point source pollution, and leading to a serious decline in water quality. The global area of saline-alkali paddy has expanded, but the response of nutrient loss via runoff to N-fertilizer applications in saline-alkali paddy is still unclear. This study conducted a 147-day field experiment to evaluate the nutrient runoff loss from saline-alkali paddy with different N-fertilizer application strategies in Songnen Plain of Northeast China. Regardless of N-fertilizer types, the nutrient loss via rainfall runoff in the entire rice-growing season was significantly (p < 0.05) higher than that via artificial drainage. The N and phosphorus (P) concentrations in runoff water were correlated with salinity and alkalinity. Especially, pH had a significant positive correlation with total-P (TP) (r = 0.658, p < 0.01). In the entire rice-growing season, the TN runoff losses in urea (U), microbial fertilizer (MF), and inorganic compound fertilizer (ICF) treatments were significantly (p < 0.05) lower compared with carbon-based slow-release fertilizer (CSF) and organic-inorganic compound fertilizer (OCF), respectively. Meanwhile, the TP runoff losses in OCF and ICF treatments were significantly (p < 0.05) lower than U and MF, respectively. Overall, the application of ICF is a better choice to avoid N and P losses via runoff from saline-alkali paddy fields.


Assuntos
Álcalis , Oryza , Fertilizantes , China , Nitrogênio , Nutrientes
3.
Chemosphere ; 339: 139764, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557995

RESUMO

Research studies have modified traditional substances to seek fast-acting removal of phosphorus in constructed wetlands (CWs) and ecological dams, rather than develop a brand-new nano-adsorbent. This work synthesized FeCa-based layered double hydroxide (FeCa-LDH) with a chemical co-precipitation method, and the performance, mechanism and factors of phosphorus removal were investigated. FeCa-LDH showed a marked ability to adsorb phosphorus from waste water, with a removal efficiency of 94.4% and 98.2% in CWs and ecological dams, respectively. Both FTIR and XPS spectrum evidenced that FeCa-LDH removed phosphorus via electrostatic and hydrogen-bonding adsorption, as well as a coordination reaction and interlayer anion exchange. FeCa-LDH showed a higher capacity to remove phosphorus in alkaline and neutral waste water than in acid conditions. Co-occurrence anions, which influenced the efficiency of the phosphorus removal capacity are considered in the sequence below: CO32- ≈ HCO3- > SO42- > NO3-. Innovatively, FeCa-LDH was not affected by the low-temperature limitation for CWs, and phosphorus removal efficiency at 5 °C was almost equal to that at 25 °C. These results cast a new idea on the construction, application and phosphorus removal performance of CWs and ecological dams.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Fósforo , Áreas Alagadas , Projetos Piloto , Hidróxidos , Adsorção , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 884: 163757, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142047

RESUMO

Systematic understanding of phosphorus adsorption performance, mechanism, factors and reusability of layered double hydroxides (LDH) remains limited. Thus, iron (Fe), calcium (Ca) and magnesium (Mg)-based LDH (FeCa-LDH and FeMg-LDH), were synthesized with a co-precipitation method to improve phosphorus removal efficiency during the wastewater treatment process. Both FeCa-LDH and FeMg-LDH showed a considerable ability to remove phosphorus in wastewater. When the phosphorus concentration was 10 mg/L, the removal efficiency reached 99 % (FeCa-LDH: 1 min) and 82 % (FeMg-LDH: 10 min), respectively. The phosphorus removal mechanism was observed to be electrostatic adsorption, coordination reaction and anionic exchange, which was more evident at pH = 10 for FeCa-LDH. Co-occurrence anions that affected phosphorus removal efficiency, were observed in the following order: HCO3- > CO32- ≈ NO3- > SO42-. After five adsorption-desorption cycles, phosphorus removal efficiency was still up to 85 % (FeCa-LDH) and 42 % (FeMg-LDH), respectively. Together, the present findings suggest that LDHs were high-performance, strongly-stable and reusable phosphorus adsorbents.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Fósforo , Hidróxidos , Adsorção , Purificação da Água/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-36900888

RESUMO

Constructed wetlands (CWs) are an eco-technology for wastewater treatment and are applied worldwide. Due to the regular influx of pollutants, CWs can release considerable quantities of greenhouse gases (GHGs), ammonia (NH3), and other atmospheric pollutants, such as volatile organic compounds (VOCs) and hydrogen sulfide (H2S), etc., which will aggravate global warming, degrade air quality and even threaten human health. However, there is a lack of systematic understanding of factors affecting the emission of these gases in CWs. In this study, we applied meta-analysis to quantitatively review the main influencing factors of GHG emission from CWs; meanwhile, the emissions of NH3, VOCs, and H2S were qualitatively assessed. Meta-analysis indicates that horizontal subsurface flow (HSSF) CWs emit less CH4 and N2O than free water surface flow (FWS) CWs. The addition of biochar can mitigate N2O emission compared to gravel-based CWs but has the risk of increasing CH4 emission. Polyculture CWs stimulate CH4 emission but pose no influence on N2O emission compared to monoculture CWs. The influent wastewater characteristics (e.g., C/N ratio, salinity) and environmental conditions (e.g., temperature) can also impact GHG emission. The NH3 volatilization from CWs is positively related to the influent nitrogen concentration and pH value. High plant species richness tends to reduce NH3 volatilization and plant composition showed greater effects than species richness. Though VOCs and H2S emissions from CWs do not always occur, it should be a concern when using CWs to treat wastewater containing hydrocarbon and acid. This study provides solid references for simultaneously achieving pollutant removal and reducing gaseous emission from CWs, which avoids the transformation of water pollution into air contamination.


Assuntos
Gases , Gases de Efeito Estufa , Humanos , Gases/análise , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Águas Residuárias , Áreas Alagadas
6.
Environ Sci Pollut Res Int ; 30(18): 51665-51678, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36810817

RESUMO

With the increasing transformation of saline-alkali land into paddy, the nitrogen (N) loss in saline-alkali paddy fields becomes an urgent agricultural-environmental problem. However, N migration and transformation following the application of different N fertilizers in saline-alkali paddy fields remains unclear. In this study, four types of N fertilizers were tested to explore the N migration and transformation among water-soil-gas-plant media in saline-alkali paddy ecosystems. Based on the structural equation models, N fertilizer types can change the effects of electrical conductivity (EC), pH, and ammonia-N (NH4+-N) of surface water and/or soil on ammonia (NH3) volatilization and nitrous oxide (N2O) emission. Compared with urea (U), the application of urea with urease-nitrification inhibitors (UI) can reduce the potential risk of NH4+-N and nitrate-N (NO3--N) loss via runoff, and significantly (p < 0.05) reduce the N2O emission. However, the expected effectiveness of UI on NH3 volatilization control and total N (TN) uptake capacity of rice was not achieved. For organic-inorganic compound fertilizer (OCF) and carbon-based slow-release fertilizer (CSF), the average TN concentrations in surface water at panicle initiation fertilizer (PIF) stage were reduced by 45.97% and 38.63%, respectively, and the TN contents in aboveground crops were increased by 15.62% and 23.91%. The cumulative N2O emissions by the end of the entire rice-growing season were also decreased by 103.62% and 36.69%, respectively. Overall, both OCF and CSF are beneficial for controlling N2O emission and the potential risks of N loss via runoff caused by surface water discharge, and improving the TN uptake capacity of rice in saline-alkali paddy fields.


Assuntos
Nitrogênio , Oryza , Nitrogênio/análise , Fertilizantes/análise , Amônia/análise , Ecossistema , Álcalis , Agricultura , Solo/química , Água , Ureia , Óxido Nitroso/análise
7.
J Hazard Mater ; 449: 131042, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36827725

RESUMO

The rapid development of agriculture increases the release of butachlor into aquatic environments. As a dominant species causing cyanobacterial blooms, Microcystis aeruginosa (M. aeruginosa) can produce microcystin and poses threats to aquatic ecosystems and human health. However, the impact of butachlor on M. aeruginosa remains unclarified. Therefore, the physiochemical responses of M. aeruginosa to butachlor were investigated, and the relevant underlying molecular mechanism was highlighted. There were no significant changes (P > 0.05) in the growth and physiology of M. aeruginosa at the low concentrations of butachlor (0-0.1 mg/L), which evidenced a high level of butachlor tolerance in Microcystis aeruginosa. For the high concentrations of butachlor (4-30 mg/L), the inhibition of photosynthetic activity, disruption of cell ultrastructure, and oxidative stress were dominant toxic effects on M. aeruginosa. Additionally, the impaired cellular integrity and lipid peroxidation may be attributed to the substantial elevations of extracellular microcystin-LR concentration. Downregulation of genes associated with photosynthesis, energy metabolism, and oxidative stress was inferred to be responsible for the growth suppression of M. aeruginosa in 30 mg/L butachlor treatment. The upregulation of gene sets involved in nitrogen metabolism may illustrate the specific effort to sustain the steady concentration of intracellular microcystin-LR. These findings dissect the response mechanism of M. aeruginosa to butachlor toxicity and provide valuable reference for the evaluation of potential risk caused by butachlor in aquatic environments.


Assuntos
Cianobactérias , Microcystis , Humanos , Microcystis/metabolismo , Ecossistema , Cianobactérias/metabolismo , Fotossíntese , Microcistinas/metabolismo
8.
Water Res ; 226: 119226, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257155

RESUMO

The combination of microbial fuel cells (MFCs) with constructed wetlands (CWs) for enhancing water purification efficiency and generating bioelectricity has attracted extensive attention. However, the other benefits of MFC-CWs are seldom reported, especially the potential for controlling gaseous emissions. In this study, we have quantitatively compared the pollutant removal efficiency and the emission of multiple gases between MFC-CWs and batch-fed wetland systems (BF CWs). MFC-CWs exhibited significantly (p < 0.01) higher COD, NH4+-N, TN, and TP removal efficiencies and significantly (p < 0.01) lower global warming potential (GWP) than BF CWs. The integration of MFC decreased GWP by 23.88% due to the reduction of CH4 and N2O fluxes, whereas the CO2 fluxes were slightly promoted. The quantitative PCR results indicate that the reduced N2O fluxes in MFC-CWs were driven by the reduced transcription of the nosZ gene and enhanced the ratio of nosZ/(nirS + nirK); the reduced CH4 fluxes were related to pomA and mcrA. Additionally, the NH3 fluxes were reduced by 52.20% in MFC-CWs compared to BF CWs. The integration of MFC promoted the diversity of microbial community, especially Anaerolineaceae, Saprospiraceae and Clostridiacea. This study highlights a further benefit of MFC-CWs and provides a new strategy for simultaneously removing pollutants and abating multiple gas emissions in BF CWs.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Áreas Alagadas , Metano/análise , Óxido Nitroso/análise
9.
Chemosphere ; 295: 133830, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149020

RESUMO

Microcystins (MCs) pollution caused by eutrophication and climate change has posed a serious threat to ecosystems and human health. Constructed wetlands (CWs) with biochar addition volume ratios of 0% (BC0-CWs), 10% (BC10-CWs), 20% (BC20-CWs) and 50% (BC50-CWs) were set up to evaluate the efficiency of biochar-amended CWs for eutrophication and MCs pollution control. The results illustrated that removal efficiencies of both NH4+-N and NO3--N were enhanced by biochar addition to varying degrees. The average TP and MC-LR removal efficiencies increased with increasing biochar addition ratios, and the average TP and MC-LR removal efficiencies in biochar-amended CWs were significantly (p < 0.05) improved by 5.64-9.58% and 10.74-14.52%, respectively, compared to that of BC0-CWs. Biochar addition changed the microbial community diversity and structure of CWs. The relative abundance of functional microorganisms such as Burkholderiaceae, Nitrospiraceae, Micrococcaceae, Sphingomonadaceae and Xanthomonadaceae was promoted by biochar addition regardless of addition ratios. The higher relative abundance of the above microorganisms in BC20-CWs and BC50-CWs may contribute to their better removal performance compared to other CWs. The concentrations of extracellular polymeric substance (EPS) in biochar-amended CWs were significantly (p < 0.05) lower than that in BC0-CWs, which can reduce the risk of system clogging. This study demonstrated that biochar addition may be a potential intensification strategy for eutrophication and MCs pollution control by CWs. Considering both the removal performance and economic cost, a biochar addition ratio of 20% was recommended as an optimal addition ratio in practical application.


Assuntos
Microbiota , Áreas Alagadas , Carvão Vegetal , Eutrofização , Matriz Extracelular de Substâncias Poliméricas , Microcistinas , Eliminação de Resíduos Líquidos
10.
Environ Pollut ; 301: 118971, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167928

RESUMO

The development of saline-alkali lands has contributed to the increasing discharge of alkaline salt-laden wastewater, which poses a threat to aquatic organisms. However, the comprehensive effect of alkaline salt on Microcystis aeruginosa, a harmful cyanobacterium, remains unclear. In this study, the growth, physiology, cell ultrastructure and production of microcystin-LR (MC-LR) in Microcystis aeruginosa exposed to four levels of alkaline salt stress were evaluated. The growth of Microcystis aeruginosa was stimulated at an electrical conductivity (EC) of 2.5 mS/cm compared to the control, as supported by the increased cell density, photosynthetic pigment and protein contents. Microcystis aeruginosa could tolerate a certain level of alkaline salt (i.e., EC of 5 mS/cm) via increasing photosynthetic pigment contents to protect cells from alkaline salt stress, but the antioxidant defence system and cell ultrastructure were not affected. When EC increased to 7.5 mS/cm, alkaline salt caused oxidative stress and toxicity in Microcystis aeruginosa, as evidenced by analysis of the integrated biomarker response (IBR). Furthermore, the photosynthetic pigment and protein contents decreased, and cell apoptosis associated with ultrastructural changes was observed. Therefore, we propose that EC of 7.5 mS/cm is a threshold for growth of Microcystis aeruginosa. Additionally, the intracellular MC-LR content was stimulated by alkaline salt, and the highest value was observed at EC of 2.5 mS/cm. The extracellular MC-LR content increased with the increasing alkaline salt concentration. When EC was 7.5 mS/cm, the extracellular MC-LR content was significantly higher than in the control and was associated with the upregulated mcyH gene. This study recommends that more attention should be paid to the risk of Microcystis aeruginosa bloom and microcystin-LR pollution in lakes located in salinization regions.


Assuntos
Cianobactérias , Microcystis , Cianobactérias/metabolismo , Toxinas Marinhas/metabolismo , Microcistinas/metabolismo , Microcystis/metabolismo
11.
J Environ Manage ; 309: 114669, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35168133

RESUMO

Microcystins (MCs) pollution caused by cyanobacteria harmful blooms (CHBs) has posed short- and long-term risks to aquatic ecosystems and public health. Constructed wetlands (CWs) have been verified as an effective technology for eutrophication but the removal performance for MCs did not achieve an acceptable level. CWs integrated with microbial fuel cell (MFC-CWs) were developed to intensify the nutrient and Microcystin-LR (MC-LR) removal efficiencies in this study. The results indicated that closed-circuit MFC-CWs (T1) exhibited a better NO3--N, NH4+-N, TP and MC-LR removal efficiency compared to that of open-circuit MFC-CWs (CK, i.e., traditional CWs). Therein, a MC-LR removal efficiency of greater than 95% was observed in both trials in T1. The addition of sponge iron to the anode layer of MFC-CWs (T2) improved only the NO3--N removal and efficiency bioelectricity generation performance compared to T1, and the average effluent MC-LR concentration of T2 (1.14 µg/L) was still higher than the provisional limit concentration (1.0 µg/L). The microbial community diversity of T1 and T2 was simplified compared to CK. The relative abundance of Sphingomonadaceae possessing the degradation capability for MCs increased in T1, which contributed to the higher MC-LR removal efficiency compared to CK and T2. While the relative abundance of electrochemically active bacteria (EAB) (i.e., Desulfuromonadaceae and Desulfomicrobiaceae) in the anode of T2 was promoted by the addition of sponge iron. Overall, this study suggests that integrating MFC into CWs provides a feasible intensification strategy for eutrophication and MCs pollution control.


Assuntos
Fontes de Energia Bioelétrica , Cianobactérias , Microbiota , Microcistinas , Áreas Alagadas
12.
Sci Total Environ ; 806(Pt 1): 150220, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560453

RESUMO

Using microbial fuel cells with constructed wetlands (MFC-CWs) for eliminating antibiotics has recently attracted extensive attention. However, antibiotic removal efficiencies in MFC-CWs must be enhanced, and the accumulation of antibiotic resistant genes (ARGs) remains an unmanageable issue. This study tries to enhance the antibiotic removal in synthetic wastewater and reduce ARGs by adding sponge iron (s-Fe0) and calcium peroxide to the anode and cathode of MFC-CWs, respectively, and/or simultaneously. The results demonstrated that adding s-Fe0 and calcium peroxide to MFC-CWs could improve the removal efficiencies of sulfamethoxazole (SMX) and tetracycline (TC) by 0.8-1.3% and 6.0-8.7%. Therein, s-Fe0 also significantly reduced 84.10-94.11% and 49.61-60.63% of total sul and tet genes, respectively. Furthermore, s-Fe0 improved the voltage output, power density, columbic efficiency, and reduced the internal resistance of reactors. The intensification to the electrode layers posed a significant effect on the microbial community composition and functions, which motivated the shift of antibiotic removal, accumulation of ARGs and bioelectricity generation in MFC-CWs. Given the overall performance of MFC-CWs, adding s-Fe0 to the anode region of MFC-CWs was found to be an effective strategy for removing antibiotics and reducing the accumulation of ARGs.


Assuntos
Fontes de Energia Bioelétrica , Áreas Alagadas , Antibacterianos , Eletrodos , Ferro , Águas Residuárias/análise
13.
Environ Pollut ; 287: 117592, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171725

RESUMO

Constructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C-F2 immobilized bacteria (i.e., immobilized salt-tolerant bacterium Alishewanella sp. F2 incorporated with a carbon source) were developed and utilized in CWs for solving the above problems. A 60-day experiment demonstrated that bioaugmented CWs (Bio-CWs) with the addition of C-F2 immobilized bacteria into the bottom gravel layer of CW microcosms (B-CF2 treatment) exhibited high nitrogen removal efficiency under a saline condition (electrical conductivity of 15 mS/cm). We measured mean nitrate nitrogen (NO3--N) and total nitrogen (TN) removal percentages of 97.8% and 88.1%, respectively, which were significantly (p < 0.05) higher than those in Bio-CWs with microbial inoculum (MI-F2 treatment, 63.5% and 78.2%) and unbioaugmented CWs (CK, 48.7% and 67.2%). The TN content of the entire plant was significantly (p < 0.05) increased in B-CF2 (636.06 mg/microcosm) compared with CK (372.06 mg/microcosm). The relative abundances of the genera Alishewanella (i.e., the exogenous bacterium, 5.5%), Clostridium-XlVa (8.8%) and Bacteroides (21.1%) in B-CF2 were significantly (p < 0.05) higher than in MI-F2 and CK, which improved the denitrification capacity of CWs. Overall, a high denitrification efficiency and durability were achieved in the newly developed Bio-CWs (i.e., B-CF2 treatment) with immobilized bacteria under saline conditions, which provides an alternative technology for the rapid removal of nitrogen from saline wastewater.


Assuntos
Desnitrificação , Áreas Alagadas , Bactérias , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias
14.
Sci Total Environ ; 777: 145956, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33676222

RESUMO

Chlorpyrifos (CP) is a typical organophosphorus insecticide, which poses serious threats to the natural environment and human health. Strategies for the fast elimination of CP and its toxic hydrolytic metabolite 3,5,6-trichloro-2(1H)-pyridianol (TCP) in drainage water are urgently needed. The fate of CP and TCP in microcosm-scale subsurface batch constructed wetlands (SSBCWs) was quantified with different macrophyte species under soda saline-alkaline (SSA) condition and effective intensification strategies were developed. The macrophyte species Canna indica outperformed Phragmites australis and Typha orientalis for CP and TCP removal in SSBCWs. Mass balance calculation indicates the fate of CP in SSBCWs was residue in water (≤8%), alkaline hydrolysis (18.93-57.42%), microbial degradation (37.75-61.91%), substrate adsorption (~4-14%), and macrophyte uptake (≤3%). The addition of ferric-carbon (Fe-C) as a substrate amendment in SSBCWs increased the CP removal percentage by 35% and reduced the effluent TCP concentration by ~70% during Day 1-4 on average compared with the unintensified control. Fe-C addition simplified the microbial community diversity, while increasing the relative abundance of Proteobacteria which tolerates the microelectrolytic environment. A single application of liquid microbial agent improved CP removal percentage by 84% and decreased the effluent TCP concentration by two orders of magnitude during Day 1-4. The hydraulic retention time for thorough removal of TCP reduced from over 8 d to 4 d. Although only two dominant microbial genera (i.e., Sphingomonas and Pseudomonas) adapted to the environment with CP and SSA, they accelerated CP and TCP degradation via their own metabolism and co-metabolism with other indigenous microorganisms.

15.
Environ Sci Pollut Res Int ; 28(14): 18089-18101, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405146

RESUMO

Nitrogen removal in constructed wetlands (CWs) may be inhibited by salinity. The clarification of the response of microbial community to salt stress is a premise for developing strategies to improve nitrogen removal efficiency in CWs under saline conditions. Results showed that the ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total nitrogen (TN) removal percentages significantly (p < 0.05) decreased in CWs with increasing salinity. The structure and abundance of the microbial community varied with different salinity levels and sampling depths in CWs. Compared with a non-saline condition, the abundances of some bacteria with a denitrification function (e.g., Arthrobacter) significantly (p < 0.05) decreased in CWs under saline conditions (i.e., EC of 15 and 30 mS/cm). Aerobic bacteria (e.g., Sphingomonas) exhibited more abundance in soil and upper gravel samples in CWs than those in bottom gravel samples, while the abundance of some denitrifying bacteria (e.g., Thauera and Azoarcus) was significantly (p < 0.05) higher in bottom gravel samples compared with soil and upper gravel samples, respectively. This study provides both microbiological evidence for explaining the impact of salt stress on nitrogen removal in CWs and scientific reference for developing enhanced strategies to improve the nitrogen removal capacity of CWs.


Assuntos
Microbiota , Áreas Alagadas , Desnitrificação , Nitrogênio , Estresse Salino , Eliminação de Resíduos Líquidos
16.
Environ Sci Pollut Res Int ; 28(3): 3008-3018, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32897473

RESUMO

Organic matter and NH4+-N are two major pollutants in domestic sewage. This study evaluated the influence of plant and circuit operation mode on the performance of constructed wetlands integrated with microbial fuel cells (CW-MFCs) and investigated the removal mechanisms of organic matter and nitrogen. Better chemical oxygen demand (COD) removal was achieved in closed-circuit CW-MFCs regardless of planting or not, with average removal efficiencies of 83.19-86.28% (closed-circuit CW-MFCs) and 76.54-83.19% (open-circuit CW-MFCs), respectively. More than 70% organic matter was removed in the anaerobic region of all CW-MFCs. In addition, the planted CW-MFCs outperformed the unplanted CW-MFCs in ammonium, nitrate, and total nitrogen removal irrespective of circuit connection or not, for example, the NH4+-N removal efficiencies of 95.91-96.82% were achieved in planted CW-MFCs compared with 56.54-59.95% achieved by unplanted CW-MFCs. Besides, 33.14-55.69% of NH4+-N was removed in the anaerobic region. Throughout the experiment, the average voltages of planted and unplanted CW-MFCs were 264 mV and 108 mV, with the corresponding maximum voltage output of 544 mV and 321 mV, respectively. Furthermore, planted CW-MFCs, simultaneously producing a peak power density of 92.05 mW m-3 with a coulombic efficiency of 0.50%, exhibited better than unplanted CW-MFCs (3.29 mW m-3 and 0.21%, respectively) in bioelectricity generation characteristics. Graphical abstract.


Assuntos
Fontes de Energia Bioelétrica , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Nitrogênio , Águas Residuárias , Áreas Alagadas
17.
Chemosphere ; 263: 128139, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297127

RESUMO

Cyanobacterial harmful algal blooms and microcystins (MCs) pollution pose serious threat to aquatic ecosystem and public health. Planted and unplanted constructed wetlands (CWs) filled with four substrates (i.e., gravel (G-CWs), ceramsite (C-CWs), iron-carbon (I-CWs) and slag (S-CWs)) were established to evaluate nutrients and a typical MCs variant (i.e., MC-LR) removal efficiency from eutrophic water affected by the presence of plant and different substrate. The response of the microbial community to the above factors was also analyzed in this study. The results indicate that the presence of plant can generally enhance nutrients and MC-LR removal efficiency in CWs, except for I-CWs. Throughout the experiment, all CWs exhibited good nitrogen removal efficiency with removal percentages exceeding 90%; TP and MC-LR average removal efficiency of C-CWs and I-CWs were greater than G-CWs and S-CWs irrespective of the presence of plant. The best MC-LR removal efficiency under different MC-LR loads was observed in planted C-CWs (ranged from 91.56% to 95.16%). Except for I-CWs, the presence of plant can enhance relative abundances of functional microorganisms involved in nutrients removal (e.g., Comamonadaceae and Planctomycetaceae) and MCs degradation (e.g., Burkholderiaceae). The microbial community diversity of I-CWs was simplified, while the relative abundance of Proteobacteria was highest in this study. The highest relative abundances of Comamonadaceae, Planctomycetaceae and Burkholderiaceae were observed in planted C-CWs. Overall, ceramisite and iron-carbon were more suitable to be applied in CWs for nutrients and MC-LR removal. This study provides a theoretical basis for practical application of CWs in eutrophication and MCs pollution control.


Assuntos
Microbiota , Áreas Alagadas , Microcistinas , Nitrogênio , Nutrientes , Água
18.
Environ Pollut ; 272: 115988, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33218779

RESUMO

Constructed wetlands integrated with microbial fuel cells (MFC-CWs) have been recently developed and tested for removing antibiotics. However, the effects of carbon source availability, electron transfer flux and cathode conditions on antibiotics removal in MFC-CWs through co-metabolism remained unclear. In this study, four experiments were conducted in MFC-CW microcosms to investigate the influence of carbon source species and concentrations, external resistance and aeration duration on sulfamethoxazole (SMX) and tetracycline (TC) removal and bioelectricity generation performance. MFC-CWs supplied with glucose as carbon source outperformed other carbon sources, and moderate influent glucose concentration (200 mg L-1) resulted in the best removal of both SMX and TC. Highest removal percentages of SMX (99.4%) and TC (97.8%) were obtained in MFC-CWs with the external resistance of 700 Ω compared to other external resistance treatments. SMX and TC removal percentages in MFC-CWs were improved by 4.98% and 4.34%, respectively, by increasing the aeration duration to 12 h compared to no aeration. For bioelectricity generation performance, glucose outperformed sodium acetate, sucrose and starch, with the highest voltages of 386 ± 20 mV, maximum power density (MPD) of 123.43 mW m-3, and coulombic efficiency (CE) of 0.273%. Increasing carbon source concentrations from 100 to 400 mg L-1, significantly (p < 0.05) increased the voltage and MPD, but decreased the internal resistance and CE. The highest MPD was obtained when the external resistance (700 Ω) was close to the internal resistance (600.11 Ω). Aeration not only improved the voltage and MPD, but also reduced the internal resistance. This study demonstrates that carbon source species and concentrations, external resistances and aeration duration, all play vital roles in regulating SMX and TC removal in MFC-CWs.


Assuntos
Fontes de Energia Bioelétrica , Antibacterianos , Eletrodos , Sulfametoxazol , Águas Residuárias , Áreas Alagadas
19.
Sci Rep ; 10(1): 10002, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561802

RESUMO

A salt-tolerant denitrifying bacterium strain F2 was isolated from seawall muddy water in Dalian City, Liaoning Province, China. Strain F2 was identified by morphological observations, physiological and biochemical characteristics and 16 S rDNA identification. The salt tolerance of strain F2 was verified and the factors affecting the removal ability of strain F2 to nitrous nitrogen (NO2-N) and nitrate nitrogen (NO3-N) in saline conditions were investigated. Strain F2 was identified as Alishewanella sp., named Alishewanella sp. F2. Strain F2 can tolerate NaCl concentrations up to 70 g/L, and its most efficient denitrification capacity was observed at NaCl concentrations of 0-30 g/L. In the medium with NaCl concentrations of 0-30 g/L, strain F2 exhibited high removal efficiencies of NO2-N and NO3-N, with the removal percentages for both NO2-N and NO3-N of approximately 99%. In saline conditions with 30 g/L NaCl, the optimum culture pH, NaNO2 initial concentrations and inoculation sizes of strain F2 were 8-10, 0.4-0.8 g/L and 5-7%, respectively. Strain F2 was highly effective in removing NO2-N and NO3-N in saline conditions, and it has a good application potential in saline wastewater treatment.


Assuntos
Alteromonadaceae/isolamento & purificação , Desnitrificação/fisiologia , Tolerância ao Sal/genética , Águas Residuárias/microbiologia , Alteromonadaceae/genética
20.
Int J Phytoremediation ; 22(11): 1185-1194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32281893

RESUMO

This study focused on the effect of saline and alkaline stress on six typical wetland plant species during seed germination and early seedling growth stages. Based on the indicators of germination, seedling growth and ionic absorption in seedlings, relatively saline and alkaline tolerant plant species were selected and tolerance mechanism was discussed. Results showed that the existence of saline and alkaline stress inhibited the capacity of germination and early seedling growth of most tested plant species to varying degrees, therein effects of saline-alkaline stress were greater than saline stress. Based on the results of principal component analysis (PCA), germination percentage, K+ content, plant height, Na+ content and Na+/K+ ratios can be selected as representative indicators for saline and alkaline tolerance evaluation during seed germination and early seedling growth stages. Among tested species, Juncus effusus and Vetiveria zizanioides exhibited relatively higher saline and alkaline tolerant capacity during their seed germination and early seedling growth. Additionally, both species increase K+ accumulation and retain lower Na+/K+ ratios, which might be their tolerance mechanisms at ion level. In conclusion, V. zizaniodes and J. effusus were recommended as potential plant species for restoring degraded saline-alkaline wetlands and/or establishing constructed wetlands for treating saline wastewater.


Assuntos
Germinação , Plântula , Biodegradação Ambiental , Sementes , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA