Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Psychiatry ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378926

RESUMO

Psilocybin, a naturally occurring, tryptamine alkaloid prodrug, is currently being investigated for the treatment of a range of psychiatric disorders. Preclinical reports suggest that the biological effects of psilocybin-containing mushroom extract or "full spectrum" (psychedelic) mushroom extract (PME), may differ from those of chemically synthesized psilocybin (PSIL). We compared the effects of PME to those of PSIL on the head twitch response (HTR), neuroplasticity-related synaptic proteins and frontal cortex metabolomic profiles in male C57Bl/6j mice. HTR measurement showed similar effects of PSIL and PME over 20 min. Brain specimens (frontal cortex, hippocampus, amygdala, striatum) were assayed for the synaptic proteins, GAP43, PSD95, synaptophysin and SV2A, using western blots. These proteins may serve as indicators of synaptic plasticity. Three days after treatment, there was minimal increase in synaptic proteins. After 11 days, PSIL and PME significantly increased GAP43 in the frontal cortex (p = 0.019; p = 0.039 respectively) and hippocampus (p = 0.015; p = 0.027) and synaptophysin in the hippocampus (p = 0.041; p = 0.05) and amygdala (p = 0.035; p = 0.004). PSIL increased SV2A in the amygdala (p = 0.036) and PME did so in the hippocampus (p = 0.014). In the striatum, synaptophysin was increased by PME only (p = 0.023). There were no significant effects of PSIL or PME on PSD95 in any brain area when these were analyzed separately. Nested analysis of variance (ANOVA) showed a significant increase in each of the 4 proteins over all brain areas for PME versus vehicle control, while significant PSIL effects were observed only in the hippocampus and amygdala and were limited to PSD95 and SV2A. Metabolomic analyses of the pre-frontal cortex were performed by untargeted polar metabolomics utilizing capillary electrophoresis - Fourier transform mass spectrometry (CE-FTMS) and showed a differential metabolic separation between PME and vehicle groups. The purines guanosine, hypoxanthine and inosine, associated with oxidative stress and energy production pathways, showed a progressive decline from VEH to PSIL to PME. In conclusion, our synaptic protein findings suggest that PME has a more potent and prolonged effect on synaptic plasticity than PSIL. Our metabolomics data support a gradient of effects from inert vehicle via chemical psilocybin to PME further supporting differential effects. Further studies are needed to confirm and extend these findings and to identify the molecules that may be responsible for the enhanced effects of PME as compared to psilocybin alone.

2.
Theranostics ; 7(10): 2690-2703, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819456

RESUMO

Recent studies have proposed that abnormal glutamatergic neurotransmission and glial pathology play an important role in the etiology and manifestation of depression. It was postulated that restoration of normal glutamatergic transmission, by enhancing glutamate uptake, may have a beneficial effect on depression. We examined this hypothesis using unique human glial-like mesenchymal stem cells (MSCs), which in addition to inherent properties of migration to regions of injury and secretion of neurotrophic factors, were differentiated to express high levels of functional glutamate transporters (excitatory amino acid transporters; EAAT). Additionally, gold nanoparticles (GNPs), which serve as contrast agents for CT imaging, were loaded into the cells for non-invasive, real-time imaging and tracking of MSC migration and final location within the brain. MSC-EAAT (2×105; 10 µl) were administered (i.c.v.) to Flinder Sensitive Line rats (FSLs), a genetic model for depression, and longitudinal behavioral and molecular changes were monitored. FSL rats treated with MSC-EAAT showed attenuated depressive-like behaviors (measured by the forced swim test, novelty exploration test and sucrose self-administration paradigm), as compared to controls. CT imaging, Flame Atomic Absorption Spectroscopy analysis and immunohistochemistry showed that the majority of MSCs homed specifically to the dentate gyrus of the hippocampus, a region showing structural brain changes in depression, including loss of glial cells. mRNA and protein levels of EAAT1 and BDNF were significantly elevated in the hippocampus of MSC-EAAT-treated FSLs. Our findings indicate that MSC-EAATs effectively improve depressive-like manifestations, possibly in part by increasing both glutamate uptake and neurotropic factor secretion in the hippocampus.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/biossíntese , Depressão/terapia , Expressão Gênica , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Animais , Comportamento Animal , Giro Denteado/patologia , Depressão/patologia , Modelos Animais de Doenças , Humanos , Estudos Longitudinais , Ratos , Usos Terapêuticos
3.
Clin Epigenetics ; 9: 70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725280

RESUMO

BACKGROUND: The DNA modification 5-hydroxymethylcytosine (5hmC) is now referred to as the sixth base of DNA with evidence of tissue-specific patterns and correlation with gene regulation and expression. This epigenetic mark was recently reported as a potential biomarker for multiple types of cancer, but its application in the clinic is limited by the utility of recent 5hmC quantification assays. We use a recently developed, ultra-sensitive, fluorescence-based single-molecule method for global quantification of 5hmC in genomic DNA. The high sensitivity of the method gives access to precise quantification of extremely low 5hmC levels common in many cancers. METHODS: We assessed 5hmC levels in DNA extracted from a set of colon and blood cancer samples and compared 5hmC levels with healthy controls, in a single-molecule approach. RESULTS: Using our method, we observed a significantly reduced level of 5hmC in blood and colon cancers and could distinguish between colon tumor and colon tissue adjacent to the tumor based on the global levels of this molecular biomarker. CONCLUSIONS: Single-molecule detection of 5hmC allows distinguishing between malignant and healthy tissue in clinically relevant and accessible tissue such as blood and colon. The presented method outperforms current commercially available quantification kits and may potentially be developed into a widely used, 5hmC quantification assay for research and clinical diagnostics. Furthermore, using this method, we confirm that 5hmC is a good molecular biomarker for diagnosing colon and various types of blood cancer.


Assuntos
5-Metilcitosina/análogos & derivados , Neoplasias do Colo/diagnóstico , Neoplasias Hematológicas/diagnóstico , Imagem Individual de Molécula/métodos , 5-Metilcitosina/análise , Neoplasias do Colo/genética , DNA de Neoplasias/genética , Epigênese Genética , Neoplasias Hematológicas/genética , Humanos , Microscopia de Fluorescência , Sensibilidade e Especificidade
4.
Sci Rep ; 5: 15400, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26507853

RESUMO

Recent advances in theranostic nanomedicine can promote stem cell and immune cell-based therapy. Gold nanoparticles (GNPs) have been shown to be promising agents for in-vivo cell-tracking in cell-based therapy applications. Yet a crucial challenge is to develop a reliable protocol for cell upload with, on the one hand, sufficient nanoparticles to achieve maximum visibility of cells, while on the other hand, assuring minimal effect of particles on cell function and viability. Previous studies have demonstrated that the physicochemical parameters of GNPs have a critical impact on their efficient uptake by cells. In the current study we have examined possible variations in GNP uptake, resulting from different incubation period and concentrations in different cell-lines. We have found that GNPs effectively labeled three different cell-lines - stem, immune and cancer cells, with minimal impairment to cell viability and functionality. We further found that uptake efficiency of GNPs into cells stabilized after a short period of time, while GNP concentration had a significant impact on cellular uptake, revealing cell-dependent differences. Our results suggest that while heeding the slight variations within cell lines, modifying the loading time and concentration of GNPs, can promote cell visibility in various nanoparticle-dependent in-vivo cell tracking and imaging applications.


Assuntos
Rastreamento de Células/métodos , Ouro/química , Nanopartículas Metálicas/química , Linhagem Celular , Sobrevivência Celular , Humanos , Neoplasias/fisiopatologia , Células-Tronco/fisiologia , Linfócitos T/fisiologia , Nanomedicina Teranóstica
5.
ACS Nano ; 8(9): 9274-85, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25133802

RESUMO

A critical problem in the development and implementation of stem cell-based therapy is the lack of reliable, noninvasive means to image and trace the cells post-transplantation and evaluate their biodistribution, final fate, and functionality. In this study, we developed a gold nanoparticle-based CT imaging technique for longitudinal mesenchymal stem cell (MSC) tracking within the brain. We applied this technique for noninvasive monitoring of MSCs transplanted in a rat model for depression. Our research reveals that cell therapy is a potential approach for treating neuropsychiatric disorders. Our results, which demonstrate that cell migration could be detected as early as 24 h and up to one month post-transplantation, revealed that MSCs specifically navigated and homed to distinct depression-related brain regions. We further developed a noninvasive quantitative CT ruler, which can be used to determine the number of cells residing in a specific brain region, without tissue destruction or animal scarification. This technique may have a transformative effect on cellular therapy, both for basic research and clinical applications.


Assuntos
Encéfalo/diagnóstico por imagem , Rastreamento de Células/métodos , Depressão/diagnóstico por imagem , Depressão/patologia , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas , Tomografia Computadorizada por Raios X , Animais , Comportamento Animal , Encéfalo/patologia , Movimento Celular , Depressão/terapia , Ouro/química , Humanos , Transplante de Células-Tronco Mesenquimais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA