Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 152(7): 1452-1462, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510744

RESUMO

The flurry of publications devoted to the functions of long non-coding RNAs (lncRNAs) published in the last decade leaves no doubt about the exceptional importance of lncRNAs in various areas including tumor biology. However, contribution of lncRNAs to the early stages of oncogenesis remains poorly understood. In this study we explored a new role for lncRNAs: stimulation of specific chromosomal rearrangements upon DNA damage. We demonstrated that lncRNA CASTL1 (ENSG00000269945) stimulates the formation of the CCDC6-RET inversion (RET/PTC1) in human thyroid cells subjected to radiation or chemical DNA damage. Facilitation of chromosomal rearrangement requires lncRNA to contain regions complementary to the introns of both CCDC6 and RET genes as deletion of these regions deprives CASTL1 of the ability to stimulate the gene fusion. We found that CASTL1 expression is elevated in tumors with CCDC6-RET fusion which is the most frequent rearrangement in papillary thyroid carcinoma. Our results open a new venue for the studies of early oncogenesis in various tumor types, especially those associated with physical or chemical DNA damage.


Assuntos
RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Aberrações Cromossômicas , Rearranjo Gênico , Carcinogênese/genética
2.
Cells ; 11(18)2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139404

RESUMO

Chloroquine and Emetine are drugs used to treat human parasitic infections. In addition, it has been shown that these drugs have an antiviral effect. Both drugs were also found to cause a suppressive effect on the growth of cancer cells of different origins. Here, using the replication-deficient HIV-1-based lentiviral vector particles, we evaluated the ability of the combination of these drugs to reduce viral transduction efficiency. We showed that these drugs act synergistically to decrease cancer cell growth when added in combination with medium containing lentiviral particles. We found that the combination of these drugs with lentiviral particles decreases the viability of treated cells. Taken together, we state the oncolytic potential of the medium containing HIV-1-based particles provoked by the combination of Chloroquine and Emetine.


Assuntos
HIV-1 , Antivirais , Cloroquina/farmacologia , Emetina/farmacologia , Humanos
3.
Mar Drugs ; 20(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323484

RESUMO

Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b']diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure-activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.


Assuntos
Antineoplásicos , Indóis , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Relação Estrutura-Atividade
4.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831272

RESUMO

The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using a CRISPR-Cas9 nickase technology, four cell lines: histiocytic lymphoma, colorectal adenocarcinoma, cervix adenocarcinoma, and hepatocarcinoma were modified to express proteasomes with mCherry-tagged ß5i subunit, which is a catalytic subunit of iPs and intPs. Importantly, the expression of the chimeric gene in modified cells is under the control of endogenous regulatory mechanisms and is increased following IFN-γ and/or TNF-α stimulation. Fluorescent proteasomes retain catalytic activity and are distributed within the nucleus and cytoplasm. RNAseq reveals marginal differences in gene expression profiles between the modified and wild-type cell lines. Predominant metabolic pathways and patterns of expressed receptors were identified for each cell line. Using established cell lines, we demonstrated that anti-cancer drugs Ruxolitinib, Vincristine and Gefitinib stimulated the expression of ß5i-containing proteasomes, which might affect disease prognosis. Taken together, obtained cell lines can be used as a platform for real-time studies of immunoproteasome gene expression, localization of iPs and intPs, interaction of non-constitutive proteasomes with other proteins, proteasome trafficking and many other aspects of proteasome biology in living cells. Moreover, the established platform might be especially useful for fast and large-scale experiments intended to evaluate the effects of different conditions including treatment with various drugs and compounds on the proteasome pool.


Assuntos
Complexo de Endopeptidases do Proteassoma/imunologia , Subunidades Proteicas/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Fluorescência , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Humanos , Interferon gama/farmacologia , Nitrilas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Vincristina/farmacologia
5.
Mar Drugs ; 19(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34564151

RESUMO

Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although significant progress has been made in the therapy of patients including novel targeted treatment approaches, there is still an urgent need to optimize treatment outcome. The most common therapy is based on the use of chemotherapeutics cytarabine and anthrayclines. Here, we studied the effect of the recently synthesized marine alkaloid 3,10-dibromofascaplysin (DBF) in myeloid leukemia cells. Unsubstituted fascaplysin was early found to affect cell cycle via inhibiting CDK4/6, thus we compared the activity of DBF and other brominated derivatives with known CDK4/6 inhibitor palbociclib, which was earlier shown to be a promising candidate to treat leukemia. Unexpectedly, the effect DBF on cell cycle differs from palbociclib. In fact, DBF induced leukemic cells apoptosis and decreased the expression of genes responsible for cancer cell survival. Simultaneously, DBF was found to activate the E2F1 transcription factor. Using bioinformatical approaches we evaluated the possible molecular mechanisms, which may be associated with DBF-induced activation of E2F1. Finally, we found that DBF synergistically increase the cytotoxic effect of cytarabine in different myeloid leukemia cell lines. In conclusion, DBF is a promising drug candidate, which may be used in combinational therapeutics approaches to reduce leukemia cell growth.


Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Leucemia Mieloide/tratamento farmacológico , Oxindóis/farmacologia , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA