Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Circulation ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557054

RESUMO

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated (R) Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism of BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9 (Smad1/5/9), which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.

2.
iScience ; 27(1): 108722, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226173

RESUMO

Epigenetic regulation of heart development remains incompletely understood. Here we show that LSD1, a histone demethylase, plays a crucial role in regulating cardiomyocyte proliferation during heart development. Cardiomyocyte-specific deletion of Lsd1 in mice inhibited cardiomyocyte proliferation, causing severe growth defect of embryonic and neonatal heart. In vivo RNA-seq and in vitro functional studies identified Cend1 as a target suppressed by LSD1. Lsd1 loss resulted in elevated Cend1 transcription associated with increased active histone mark H3K4me2 at Cend1 promoter. Cend1 knockdown relieved the cell-cycle arrest and proliferation defect caused by LSD1 inhibition in primary rat cardiomyocytes. Moreover, genetic deletion of Cend1 rescued cardiomyocyte proliferation defect and embryonic lethality in Lsd1 null embryos. Consistently, LSD1 promoted the cell cycle of cardiomyocytes derived from human-induced pluripotent stem cells by repressing CEND1. Together, these findings reveal an epigenetic regulatory mechanism involving the LSD1-CEND1 axis that controls cardiomyocyte proliferation essential for murine heart development.

3.
Proc Natl Acad Sci U S A ; 121(5): e2318904121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261622

RESUMO

Flow patterns exert significant effects on vascular endothelial cells (ECs) to lead to the focal nature of atherosclerosis. Using a step flow chamber to investigate the effects of disturbed shear (DS) and pulsatile shear (PS) on ECs in the same flow channel, we conducted single-cell RNA sequencing analyses to explore the distinct transcriptomic profiles regulated by DS vs. PS. Integrated analysis identified eight cell clusters and demonstrated that DS induces EC transition from atheroprotective to proatherogenic phenotypes. Using an automated cell type annotation algorithm (SingleR), we showed that DS promoted endothelial-to-mesenchymal transition (EndMT) by inducing the transcriptional phenotypes for inflammation, hypoxia responses, transforming growth factor-beta (TGF-ß) signaling, glycolysis, and fatty acid synthesis. Enolase 1 (ENO1), a key gene in glycolysis, was one of the top-ranked genes in the DS-induced EndMT cluster. Pseudotime trajectory analysis revealed that the kinetic expression of ENO1 was significantly associated with EndMT and that ENO1 silencing repressed the DS- and TGF-ß-induced EC inflammation and EndMT. Consistent with these findings, ENO1 was highly expressed in ECs at the inner curvature of the mouse aortic arch (which is exposed to DS) and atherosclerotic lesions, suggesting its proatherogenic role in vivo. In summary, we present a comprehensive single-cell atlas of ECs in response to different flow patterns within the same flow channel. Among the DS-regulated genes, ENO1 plays an important role in DS-induced EC inflammation and EndMT. These results provide insights into how hemodynamic forces regulate vascular endothelium in health and disease.


Assuntos
Aterosclerose , Células Endoteliais , Animais , Camundongos , Perfilação da Expressão Gênica , Inflamação , Análise de Sequência de RNA , Fator de Crescimento Transformador beta
4.
Cardiovasc Res ; 120(4): 403-416, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198357

RESUMO

AIMS: Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by a high mortality rate. Pulmonary arterial endothelium cells (PAECs) serve as a primary sensor of various environmental cues, such as shear stress and hypoxia, but PAEC dysfunction may trigger vascular remodelling during the onset of PH. This study aimed to illustrate the role of Sirtuin 7 (SIRT7) in endothelial dysfunction during PH and explore the potential therapeutic strategy for PH. METHODS AND RESULTS: SIRT7 levels were measured in human and murine experimental PH samples. Bioinformatic analysis, immunoprecipitation, and deacetylation assay were used to identify the association between SIRT7 and Krüpple-like factor 4 (KLF4), a key transcription factor essential for endothelial cell (EC) homeostasis. Sugen5416 + hypoxia (SuHx)-induced PH mouse models and cell cultures were used for the study of the therapeutic effect of SIRT7 for PH. SIRT7 level was significantly reduced in lung tissues and PAECs from PH patients and the SuHx-induced PH mouse model as compared with healthy controls. Pulmonary endothelium-specific depletion of Sirt7 increased right ventricular systolic pressure and exacerbated right ventricular hypertrophy in the SuHx-induced PH model. At the molecular level, we identified KLF4 as a downstream target of SIRT7, which deacetylated KLF4 at K228 and inhibited the ubiquitination-proteasome degradation. Thus, the SIRT7/KLF4 axis maintained PAEC homeostasis by regulating proliferation, migration, and tube formation. PAEC dysfunction was reversed by adeno-associated virus type 1 vector-mediated endothelial overexpression of Sirt7 or supplementation with nicotinamide adenine dinucleotide (NAD)+ intermediate nicotinamide riboside which activated Sirt7; both approaches successfully reversed PH phenotypes. CONCLUSION: The SIRT7/KLF4 axis ensures PAEC homeostasis, and pulmonary endothelium-specific SIRT7 targeting might constitute a PH therapeutic strategy.


Assuntos
Hipertensão Pulmonar , Sirtuínas , Animais , Humanos , Camundongos , Endotélio Vascular/metabolismo , Hipóxia/metabolismo , Pulmão/metabolismo , Artéria Pulmonar , Sirtuínas/genética , Sirtuínas/metabolismo
6.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569694

RESUMO

Although Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) share some clinical manifestations, their cardiovascular outcomes are different, and this may be reflected at the level of the endothelial cell (EC). We performed RNA-seq on cultured ECs incubated with pre-treatment sera from KD (n = 5), MIS-C (n = 7), and healthy controls (n = 3). We conducted a weighted gene co-expression network analysis (WGCNA) using 935 transcripts differentially expressed between MIS-C and KD using relaxed filtering (unadjusted p < 0.05, >1.1-fold difference). We found seven gene modules in MIS-C, annotated as an increased TNFα/NFκB pathway, decreased EC homeostasis, anti-inflammation and immune response, translation, and glucocorticoid responsive genes and endothelial-mesenchymal transition (EndoMT). To further understand the difference in the EC response between MIS-C and KD, stringent filtering was applied to identify 41 differentially expressed genes (DEGs) between MIS-C and KD (adjusted p < 0.05, >2-fold-difference). Again, in MIS-C, NFκB pathway genes, including nine pro-survival genes, were upregulated. The expression levels were higher in the genes influencing autophagy (UBD, EBI3, and SQSTM1). Other DEGs also supported the finding by WGCNA. Compared to KD, ECs in MIS-C had increased pro-survival transcripts but reduced transcripts related to EndoMT and EC homeostasis. These differences in the EC response may influence the different cardiovascular outcomes in these two diseases.


Assuntos
COVID-19 , Doenças do Tecido Conjuntivo , Síndrome de Linfonodos Mucocutâneos , Criança , Humanos , Síndrome de Linfonodos Mucocutâneos/genética , Células Endoteliais , Síndrome de Resposta Inflamatória Sistêmica/genética
7.
Annu Rev Biomed Eng ; 25: 157-184, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36913673

RESUMO

The central dogma of gene expression involves DNA transcription to RNA and RNA translation into protein. As key intermediaries and modifiers, RNAs undergo various forms of modifications such as methylation, pseudouridylation, deamination, and hydroxylation. These modifications, termed epitranscriptional regulations, lead to functional changes in RNAs. Recent studies have demonstrated crucial roles for RNA modifications in gene translation, DNA damage response, and cell fate regulation. Epitranscriptional modifications play an essential role in development, mechanosensing, atherogenesis, and regeneration in the cardiovascular (CV) system, and their elucidation is critically important to understanding the molecular mechanisms underlying CV physiology and pathophysiology. This review aims at providing biomedical engineers with an overview of the epitranscriptome landscape, related key concepts, recent findings in epitranscriptional regulations, and tools for epitranscriptome analysis. The potential applications of this important field in biomedical engineering research are discussed.


Assuntos
Engenharia Biomédica , Sistema Cardiovascular , Humanos , RNA/genética , RNA/metabolismo , Regulação da Expressão Gênica , Bioengenharia
8.
Proc Natl Acad Sci U S A ; 120(6): e2219630120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716379

RESUMO

Endothelial progenitor cells (EPCs) play an important role in vascular repair and re-endothelialization after vessel injury. EPCs in blood vessels are subjected to cyclic stretch (CS) due to the pulsatile pressure, but the role of CS in metabolic reprogramming of EPC, particularly its vascular homing and repair, is largely unknown. In the current study, physiological CS applied to EPCs at a magnitude of 10% and a frequency of 1 Hz significantly promoted their vascular adhesion and endothelial differentiation. CS enhanced mitochondrial elongation and oxidative phosphorylation (OXPHOS), as well as adenosine triphosphate production. Metabolomic study and Ultra-high performance liquid chromatography-mass spectrometry assay revealed that CS significantly decreased the content of long-chain fatty acids (LCFAs) and markedly induced long-chain fatty acyl-CoA synthetase 1 (Acsl1), which in turn facilitated the catabolism of LCFAs in mitochondria via fatty acid ß-oxidation and OXPHOS. In a rat carotid artery injury model, transplantation of EPCs overexpressing Acsl1 enhanced the adhesion and re-endothelialization of EPCs in vivo. MRI and vascular morphology staining showed that Acsl1 overexpression in EPCs improved vascular repair and inhibited vascular stenosis. This study reveals a mechanotransduction mechanism by which physiological CS enhances endothelial repair via EPC patency.


Assuntos
Células Progenitoras Endoteliais , Ratos , Animais , Mecanotransdução Celular , Diferenciação Celular , Mitocôndrias/metabolismo , Ácidos Graxos/metabolismo
9.
Am J Respir Crit Care Med ; 207(3): 323-335, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191258

RESUMO

Rationale: Obstructive sleep apnea (OSA)-induced endothelial cell (EC) dysfunction contributes to OSA-related cardiovascular sequelae. The mechanistic basis of endothelial impairment by OSA is unclear. Objectives: The goals of this study were to identify the mechanism of OSA-induced EC dysfunction and explore the potential therapies for OSA-accelerated cardiovascular disease. Methods: The experimental methods include data mining, bioinformatics, EC functional analyses, OSA mouse models, and assessment of OSA human subjects. Measurements and Main Results: Using mined microRNA sequencing data, we found that microRNA 210 (miR-210) conferred the greatest induction by intermittent hypoxia in ECs. Consistently, the serum concentration of miR-210 was higher in individuals with OSA from two independent cohorts. Importantly, miR-210 concentration was positively correlated with the apnea-hypopnea index. RNA sequencing data collected from ECs transfected with miR-210 or treated with OSA serum showed a set of genes commonly altered by miR-210 and OSA serum, which are largely involved in mitochondrion-related pathways. ECs transfected with miR-210 or treated with OSA serum showed reduced [Formula: see text]o2 rate, mitochondrial membrane potential, and DNA abundance. Mechanistically, intermittent hypoxia-induced SREBP2 (sterol regulatory element-binding protein 2) bound to the promoter region of miR-210, which in turn inhibited the iron-sulfur cluster assembly enzyme and led to mitochondrial dysfunction. Moreover, the SREBP2 inhibitor betulin alleviated intermittent hypoxia-increased systolic blood pressure in the OSA mouse model. Conclusions: These results identify an axis involving SREBP2, miR-210, and mitochondrial dysfunction, representing a new mechanistic link between OSA and EC dysfunction that may have important implications for treating and preventing OSA-related cardiovascular sequelae.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Apneia Obstrutiva do Sono , Doenças Vasculares , Animais , Camundongos , Humanos , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/genética , Hipóxia/genética , MicroRNAs/genética
10.
Circ Res ; 131(10): 828-841, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36252121

RESUMO

BACKGROUND: Dysregulated BMP (bone morphogenetic protein) or TGF-ß (transforming growth factor beta) signaling pathways are imperative in idiopathic and familial pulmonary arterial hypertension (PAH) as well as experimental pulmonary hypertension (PH) in rodent models. MED1 (mediator complex subunit 1) is a key transcriptional co-activator and KLF4 (Krüppel-like factor 4) is a master transcription factor in endothelium. However, MED1 and KLF4 epigenetic and transcriptional regulations of the BMP/TGF-ß axes in pulmonary endothelium and their dysregulations leading to PAH remain elusive. We investigate the MED1/KLF4 co-regulation of the BMP/TGF-ß axes in endothelium by studying the epigenetic regulation of BMPR2 (BMP receptor type II), ETS-related gene (ERG), and TGFBR2 (TGF-ß receptor 2) and their involvement in the PH. METHODS: High-throughput screening involving data from RNA-seq, MED1 ChIP-seq, H3K27ac ChIP-seq, ATAC-seq, and high-throughput chromosome conformation capture together with in silico computations were used to explore the epigenetic and transcriptional regulation of BMPR2, ERG, and TGFBR2 by MED1 and KLF4. In vitro experiments with cultured pulmonary arterial endothelial cells (ECs) and bulk assays were used to validate results from these in silico analyses. Lung tissue from patients with idiopathic PAH, animals with experimental PH, and mice with endothelial ablation of MED1 (EC-MED1-/-) were used to study the PH-protective effect of MED1. RESULTS: Levels of MED1 were decreased in lung tissue or pulmonary arterial endothelial cells from idiopathic PAH patients and rodent PH models. Mechanistically, MED1 acted synergistically with KLF4 to transactivate BMPR2, ERG, and TGFBR2 via chromatin remodeling and enhancer-promoter interactions. EC-MED1-/- mice showed PH susceptibility. In contrast, MED1 overexpression mitigated the PH phenotype in rodents. CONCLUSIONS: A homeostatic regulation of BMPR2, ERG, and TGFBR2 in ECs by MED1 synergistic with KLF4 is essential for the normal function of the pulmonary endothelium. Dysregulation of MED1 and the resulting impairment of the BMP/TGF-ß signaling is implicated in the disease progression of PAH in humans and PH in rodent models.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Camundongos , Animais , Hipertensão Pulmonar/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Células Endoteliais/metabolismo , Epigênese Genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Artéria Pulmonar/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Hipertensão Arterial Pulmonar/genética , Endotélio Vascular/metabolismo , Fatores de Transcrição/metabolismo , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo
11.
J Am Heart Assoc ; 11(14): e025408, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861833

RESUMO

Background Damage to the coronary arteries during the acute phase of Kawasaki disease (KD) is linked to inflammatory cell infiltration, myointimal proliferation, and endothelial cell (EC) dysfunction. To understand the response of ECs to KD treatment, we studied the genome-wide transcriptional changes in cultured ECs incubated with KD sera before and after treatment with or without atorvastatin. Methods and Results RNA sequencing of human umbilical vein ECs incubated with pooled sera from patients with acute KD before or after treatment with intravenous immunoglobulin and infliximab revealed differentially expressed genes in interleukin-1, tumor necrosis factor-α, and inflammatory cell recruitment pathways. Subacute sera pooled from patients treated with intravenous immunoglobulin, infliximab, and atorvastatin uniquely induced expression of NOS3, Kruppel like factor (KLF2, and KLF4 (promotes EC homeostasis and angiogenesis) and ZFP36 ring finger protein (ZFP36) and suppressor of cytokine signaling 3 (SOCS3) (suppresses inflammation), and suppressed expression of TGFB2 and DKK1 (induces endothelial-mesenchymal transition) and sphingosine kinase 1 (SPHK1) and C-X-C motif chemokine ligand 8 (CXCL8) (induces inflammation). Conclusions These results suggest that atorvastatin treatment of patients with acute KD may improve EC health, reduce mediators of inflammation produced by ECs, and block KD-induced myofibroblast proliferation.


Assuntos
Células Endoteliais , Síndrome de Linfonodos Mucocutâneos , Atorvastatina/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunoglobulinas Intravenosas , Inflamação/metabolismo , Infliximab/metabolismo , Infliximab/farmacologia , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/metabolismo , Análise de Sequência de RNA
12.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L737-L760, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318857

RESUMO

Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.


Assuntos
Hipertensão Pulmonar , Proteínas de Membrana/metabolismo , Artéria Pulmonar , Animais , Sinalização do Cálcio/fisiologia , Proliferação de Células , Células Cultivadas , Humanos , Hipertensão Pulmonar/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Remodelação Vascular
13.
Sci Rep ; 12(1): 344, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013491

RESUMO

Endothelial dysfunction and vascular smooth muscle cell (VSMC) plasticity are critically involved in the pathogenesis of hypertension and arterial stiffness. MicroRNAs can mediate the cellular communication between vascular endothelial cells (ECs) and neighboring cells. Here, we investigated the role of endothelial-derived extracellular microRNA-92a (miR-92a) in promoting arterial stiffness by regulating EC-VSMC communication. Serum miR-92a level was higher in hypertensive patients than controls. Circulating miR-92a level was positively correlated with pulse wave velocity (PWV), systolic blood pressure (SBP), diastolic blood pressure (DBP), and serum endothelin-1 (ET-1) level, but inversely with serum nitric oxide (NO) level. In vitro, angiotensin II (Ang II)-increased miR-92a level in ECs mediated a contractile-to-synthetic phenotype change of co-cultured VSMCs. In Ang II-infused mice, locked nucleic acid-modified antisense miR-92a (LNA-miR-92a) ameliorated PWV, SBP, DBP, and impaired vasodilation induced by Ang II. LNA-miR-92a administration also reversed the increased levels of proliferative genes and decreased levels of contractile genes induced by Ang II in mouse aortas. Circulating serum miR-92a level and PWV were correlated in these mice. These findings indicate that EC miR-92a may be transported to VSMCs via extracellular vesicles to regulate phenotype changes of VSMCs, leading to arterial stiffness.


Assuntos
Células Endoteliais/metabolismo , Exossomos/metabolismo , Hipertensão/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Rigidez Vascular , Adulto , Animais , Pressão Arterial , Estudos de Casos e Controles , Comunicação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Exossomos/genética , Exossomos/patologia , Feminino , Humanos , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Fenótipo , Estudos Prospectivos , Vasodilatação
14.
Endocrinol Diabetes Metab ; 5(1): e00301, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585841

RESUMO

AIMS: Type 2 diabetes mellitus (T2DM) is a strong risk factor for complications of coronavirus disease 2019 (COVID-19). The effect of T2DM medications on COVID-19 outcomes remains unclear. In a retrospective analysis of a cohort of 131 patients with T2DM hospitalized for COVID-19 in Wuhan, we have previously found that metformin use prior to hospitalization is associated with reduced mortality. The current study aims to investigate the effects of inpatient use of T2DM medications, including metformin, acarbose, insulin and sulfonylureas, on the mortality of COVID-19 patients with T2DM during hospitalization. METHODS: We continue to carry out a retrospective analysis of a cohort of 131 patients with T2DM hospitalized for COVID-19 and treated with different combinations of diabetes medications. RESULTS: We found that patients using metformin (p = .02) and acarbose (p = .04), alone or both together (p = .03), after admission were significantly more likely to survive than those who did not use either metformin or acarbose. 37 patients continued to take metformin after admission and 35 (94.6%) survived. Among the 57 patients who used acarbose after admission, 52 survived (91.2%). A total of 20 patients used both metformin and acarbose, while 57 used neither. Of the 20 dual-use patients, 19 (95.0%) survived. CONCLUSION: Our analyses suggest that inpatient use of metformin and acarbose together or alone during hospitalization should be studied in randomized trials.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Metformina , Acarbose/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Pacientes Internados , Metformina/uso terapêutico , Estudos Retrospectivos , SARS-CoV-2
15.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34806652

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with limited treatment options. Despite endothelial cells (ECs) comprising 30% of the lung cellular composition, the role of EC dysfunction in pulmonary fibrosis (PF) remains unclear. We hypothesize that sterol regulatory element-binding protein 2 (SREBP2) plays a critical role in the pathogenesis of PF via EC phenotypic modifications. Transcriptome data demonstrate that SREBP2 overexpression in ECs led to the induction of the TGF, Wnt, and cytoskeleton remodeling gene ontology pathways and the increased expression of mesenchymal genes, such as snail family transcriptional repressor 1 (snai1), α-smooth muscle actin, vimentin, and neural cadherin. Furthermore, SREBP2 directly bound to the promoter regions and transactivated these mesenchymal genes. This transcriptomic change was associated with an epigenetic and phenotypic switch in ECs, leading to increased proliferation, stress fiber formation, and ECM deposition. Mice with endothelial-specific transgenic overexpression of SREBP2 (EC-SREBP2[N]-Tg mice) that were administered bleomycin to induce PF demonstrated exacerbated vascular remodeling and increased mesenchymal transition in the lung. SREBP2 was also found to be markedly increased in lung specimens from patients with IPF. These results suggest that SREBP2, induced by lung injury, can exacerbate PF in rodent models and in human patients with IPF.


Assuntos
Células Endoteliais/metabolismo , Fibrose Pulmonar/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Humanos , Camundongos
16.
Am J Physiol Cell Physiol ; 321(6): C1010-C1027, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669509

RESUMO

Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Canais Iônicos/biossíntese , Mecanotransdução Celular/fisiologia , Artéria Pulmonar/metabolismo , Regulação para Cima/fisiologia , Adulto , Idoso , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Hipertensão Pulmonar/patologia , Indóis/farmacologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
17.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1161-L1182, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704831

RESUMO

Idiopathic pulmonary arterial hypertension (PAH) is a fatal and progressive disease. Sustained vasoconstriction due to pulmonary arterial smooth muscle cell (PASMC) contraction and concentric arterial remodeling due partially to PASMC proliferation are the major causes for increased pulmonary vascular resistance and increased pulmonary arterial pressure in patients with precapillary pulmonary hypertension (PH) including PAH and PH due to respiratory diseases or hypoxemia. We and others observed upregulation of TRPC6 channels in PASMCs from patients with PAH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in PASMC triggers PASMC contraction and vasoconstriction, while Ca2+-dependent activation of PI3K/AKT/mTOR pathway is a pivotal signaling cascade for cell proliferation and gene expression. Despite evidence supporting a pathological role of TRPC6, no selective and orally bioavailable TRPC6 antagonist has yet been developed and tested for treatment of PAH or PH. In this study, we sought to investigate whether block of receptor-operated Ca2+ channels using a nonselective blocker of cation channels, 2-aminoethyl diphenylborinate (2-APB, administered intraperitoneally) and a selective blocker of TRPC6, BI-749327 (administered orally) can reverse established PH in mice. The results from the study show that intrapulmonary application of 2-APB (40 µM) or BI-749327 (3-10 µM) significantly and reversibly inhibited acute alveolar hypoxia-induced pulmonary vasoconstriction. Intraperitoneal injection of 2-APB (1 mg/kg per day) significantly attenuated the development of PH and partially reversed established PH in mice. Oral gavage of BI-749327 (30 mg/kg, every day, for 2 wk) reversed established PH by ∼50% via regression of pulmonary vascular remodeling. Furthermore, 2-APB and BI-749327 both significantly inhibited PDGF- and serum-mediated phosphorylation of AKT and mTOR in PASMC. In summary, the receptor-operated and mechanosensitive TRPC6 channel is a good target for developing novel treatment for PAH/PH. BI-749327, a selective TRPC6 blocker, is potentially a novel and effective drug for treating PAH and PH due to respiratory diseases or hypoxemia.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/patologia , Artéria Pulmonar/patologia , Canal de Cátion TRPC6/metabolismo , Vasoconstrição , Animais , Compostos de Boro/farmacologia , Sinalização do Cálcio , Células Cultivadas , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/genética
18.
Pulm Circ ; 11(4): 20458940211041512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531976

RESUMO

Pulmonary arterial hypertension is a progressive and fatal disease and rodents with experimental pulmonary hypertension (PH) are often used to study pathogenic mechanisms, identify therapeutic targets, and develop novel drugs for treatment. Here we describe a hands-on set of experimental approaches including ex vivo lung angiography and histology and in vivo right heart catheterization (RHC) to phenotypically characterize pulmonary hemodynamics and lung vascular structure in normal mice and mice with experimental PH. We utilized Microfil polymer as contrast in our ex vivo lung angiogram to quantitatively examine pulmonary vascular remodeling in mice with experimental PH, and lung histology to estimate pulmonary artery wall thickness. The peripheral lung vascular images were selected to determine the total length of lung vascular branches, the number of branches and the number of junctions in a given area (mm-2). We found that the three parameters determined by angiogram were not significantly different among the apical, middle, and basal regions of the mouse lung from normal mice, and were not influenced by gender (no significant difference between female and male mice). We conducted RHC in mice to measure right ventricular systolic pressure, a surrogate measure for pulmonary artery systolic pressure and right ventricle (RV) contractility (RV ± dP/dtmax) to estimate RV function. RHC, a short time (4-6 min) procedure, did not alter the lung angiography measurements. In summary, utilizing ex vivo angiogram to determine peripheral vascular structure and density in the mouse lung and utilizing in vivo RHC to measure pulmonary hemodynamics are reliable readouts to phenotype normal mice and mice with experimental PH. Lung angiogram and RHC are also reliable approaches to examine pharmacological effects of new drugs on pulmonary vascular remodeling and hemodynamics.

19.
Front Physiol ; 12: 714785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408668

RESUMO

Excessive pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and migration are implicated in the development of pathogenic pulmonary vascular remodeling characterized by concentric arterial wall thickening and arteriole muscularization in patients with pulmonary arterial hypertension (PAH). Pulmonary artery smooth muscle cell contractile-to-proliferative phenotypical transition is a process that promotes pulmonary vascular remodeling. A rise in cytosolic Ca2+ concentration [(Ca2+) cyt ] in PASMCs is a trigger for pulmonary vasoconstriction and a stimulus for pulmonary vascular remodeling. Here, we report that the calcium homeostasis modulator (CALHM), a Ca2+ (and ATP) channel that is allosterically regulated by voltage and extracellular Ca2+, is upregulated during the PASMC contractile-to-proliferative phenotypical transition. Protein expression of CALHM1/2 in primary cultured PASMCs in media containing serum and growth factors (proliferative PASMC) was significantly greater than in freshly isolated PA (contractile PASMC) from the same rat. Upregulated CALHM1/2 in proliferative PASMCs were associated with an increased ratio of pAKT/AKT and pmTOR/mTOR and an increased expression of the cell proliferation marker PCNA, whereas serum starvation and rapamycin significantly downregulated CALHM1/2. Furthermore, CALHM1/2 were upregulated in freshly isolated PA from rats with monocrotaline (MCT)-induced PH and in primary cultured PASMC from patients with PAH in comparison to normal controls. Intraperitoneal injection of CGP 37157 (0.6 mg/kg, q8H), a non-selective blocker of CALHM channels, partially reversed established experimental PH. These data suggest that CALHM upregulation is involved in PASMC contractile-to-proliferative phenotypical transition. Ca2+ influx through upregulated CALHM1/2 may play an important role in the transition of sustained vasoconstriction to excessive vascular remodeling in PAH or precapillary PH. Calcium homeostasis modulator could potentially be a target to develop novel therapies for PAH.

20.
Arterioscler Thromb Vasc Biol ; 41(9): 2509-2511, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34261329
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA