Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38004728

RESUMO

Mycoplasma synoviae infection rates in chickens are increasing worldwide. Genomic studies have considerably improved our understanding of M. synoviae biology and virulence. However, approximately 20% of the predicted proteins have unknown functions. In particular, the M. synoviae ATCC 25204 genome has 663 encoding DNA sequences, among which 155 are considered encoding hypothetical proteins (HPs). Several of these genes may encode unknown virulence factors. This study aims to reannotate all 155 proteins in M. synoviae ATCC 25204 to predict new potential virulence factors using currently available databases and bioinformatics tools. Finally, 125 proteins were reannotated, including enzymes (39%), lipoproteins (10%), DNA-binding proteins (6%), phase-variable hemagglutinin (19%), and other protein types (26%). Among 155 proteins, 28 proteins associated with virulence were detected, five of which were reannotated. Furthermore, HP expression was compared before and after the M. synoviae infection of cells to identify potential virulence-related proteins. The expression of 14 HP genes was upregulated, including that of five virulence-related genes. Our study improved the functional annotation of M. synoviae ATCC 25204 from 76% to 95% and enabled the discovery of potential virulence factors in the genome. Moreover, 14 proteins that may be involved in M. synoviae infection were identified, providing candidate proteins and facilitating the exploration of the infection mechanism of M. synoviae.

2.
Front Vet Sci ; 10: 1249499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026678

RESUMO

Mycoplasma synoviae is a significant cause of respiratory disease and synovitis among chickens, and has an adverse economic impact on broiler breeding efforts. The present study was designed to develop a systematic understanding of the role that M. synoviae lipid-associated membrane proteins (LAMPs) may play in the virulence of this pathogen. Bioinformatics tools were used to identify 146 predicted membrane proteins and lipoproteins in the M. synoviae proteome. Then, Triton X-114 was used to extract LAMPs that were subsequently identified via LC-MS/MS. This approach enabled the detection of potential LAMPs, and the top 200 most abundant proteins detected using this strategy were subject to further analysis. M. synoviae cells (100 MOI) were exposed to chicken fibroblasts (DF-1) and macrophages (HD-11) in a 1:1 mixed culture. Analysis of LAMP transcripts identified 72 up-regulated LAMP genes which were analyzed in depth by bioinformatics. GO analysis revealed these genes to be enriched in the nucleotide binding, sulfur amino acid transmembrane transporter activity, tRNA binding, rRNA modification, and transition metal ion transport pathways. Moreover, KEGG enrichment analysis suggested that these genes were enriched in the biosynthesis of secondary metabolites, carbon metabolism, glycolysis/gluconeogenesis, and nitrogen metabolism pathways.

3.
Microorganisms ; 11(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37894260

RESUMO

Mycoplasma bovis is a global concern for the cattle industry owing to its high rates of infection and resulting morbidity, but its pathogenesis remains poorly understood. Metabolic pathways and characteristics of M. bovis clinical strain were elucidated by comparing the differential expression of metabolites between M. bovis clinical strain NX114 and M. bovis international reference strain PG45. Metabolites of M. bovis in the logarithmic stage were analyzed based on the non-targeted metabolomic technology of ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). We found 596 metabolites with variable expression, of which, 190 had substantial differences. Differential metabolite analysis of M. bovis NX114 showed organic acids and their derivatives, nucleosides, and nucleotide analogs as important components. We found O-Phospho-L-serine (SEP) as a potential signature metabolite and indicator of pathogenicity. The difference in nucleic acid metabolites reflects the difference in growth phenotypes between both strains of M. bovis. According to KEGG enrichment analysis, the ABC transporter synthesis route had the most differential metabolites of the first 15 differential enrichment pathways. This study reflects the species-specific differences between two strains of M. bovis and further enriches our understanding of its metabolism, paving the way for further research into its pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA