Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(1): 3, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991548

RESUMO

Psoriasis is one of the common chronic inflammatory skin diseases worldwide. The skin microbiota plays a role in psoriasis through regulating skin homeostasis. However, the studies on the interactions between symbiotic microbial strains and psoriasis are limited. In this study, Staphylococcus strain XSB102 was isolated from the skin of human, which was identified as Staphylococcus warneri using VITEK2 Compact. To reveal the roles of Staphylococcus warneri on psoriasis, XSB102 were applied on the back of imiquimod-induced psoriasis-like dermatitis mice. The results indicated that it exacerbated the psoriasis and significantly increased the thickening of the epidermis. Furthermore, in vitro experiments confirmed that inactivated strain XSB102 could promote the proliferation of human epidermal keratinocytes (HaCaT) cell. However, real-time quantitative PCR and immunofluorescence results suggested that the expression of inflammatory factors such as IL-17a, IL-6, and so on were not significantly increased, while extracellular matrix related factors such as Col6a3 and TGIF2 were significantly increased after XSB102 administration. This study indicates that Staphylococcus warneri XSB102 can exacerbate psoriasis and promote keratinocyte proliferation independently of inflammatory factors, which paves the way for further exploration of the relationship between skin microbiota and psoriasis.


Assuntos
Dermatite , Psoríase , Camundongos , Humanos , Animais , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Psoríase/induzido quimicamente , Psoríase/metabolismo , Pele , Queratinócitos/metabolismo , Staphylococcus/genética , Proliferação de Células , Dermatite/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas Repressoras/metabolismo , Proteínas de Homeodomínio/efeitos adversos , Proteínas de Homeodomínio/metabolismo
2.
Microbiol Spectr ; 11(3): e0118822, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36507683

RESUMO

Haze pollution has been a public health issue. The skin microbiota, as a component of the first line of defense, is disturbed by environmental pollutants, which may have an impact on human health. A total of 74 skin samples from healthy students were collected during haze and nonhaze days in spring and winter. Significant differences of skin fungal community composition between haze and nonhaze days were observed in female and male samples in spring and male samples in winter based on unweighted UniFrac distance analysis. Phylogenetic diversity whole-tree indices and observed features were significantly increased during haze days in male samples in winter compared to nonhaze days, but no significant difference was observed in other groups. Dothideomycetes, Capnodiales, Mycosphaerellaceae, etc. were significantly enriched during nonhaze days, whereas Trichocomaceae, Talaromyces, and Pezizaceae were significantly enriched during haze days. Thus, five Talaromyces strains were isolated, and an in vitro culture experiment revealed that the growth of representative Talaromyces strains was increased at high concentrations of particulate matter, confirming the sequencing results. Furthermore, during haze days, the fungal community assembly was better fitted to a niche-based assembly model than during nonhaze days. Talaromyces enriched during haze days deviated from the neutral assembly process. Our findings provided a comprehensive characterization of the skin fungal community during haze and nonhaze days and elucidated novel insights into how haze exposure influences the skin fungal community. IMPORTANCE Skin fungi play an important role in human health. Particulate matter (PM), the main haze pollutant, has been a public environmental threat. However, few studies have assessed the effects of air pollutants on skin fungi. Here, haze exposure influenced the diversity and composition of the skin fungal community. In an in vitro experiment, a high concentration of PM promoted the growth of Talaromyces strains. The fungal community assembly is better fitted to a niche-based assembly model during haze days. We anticipate that this study may provide new insights on the role of haze exposure disturbing the skin fungal community. It lays the groundwork for further clarifying the association between the changes of the skin fungal community and adverse health outcomes. Our study is the first to report the changes in the skin fungal community during haze and nonhaze days, which expands the understanding of the relationship between haze and skin fungi.


Assuntos
Micobioma , Talaromyces , Humanos , Talaromyces/genética , Tamanho da Partícula , Filogenia , Microbiologia do Ar , Monitoramento Ambiental , Material Particulado/análise
3.
Front Microbiol ; 13: 967649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060766

RESUMO

Hypertension is a major threat to human health. Eucommia ulmoides Oliv. (EU) is a small tree and EU extract is widely used to improve hypertension in East Asia. However, its major constituents have poor absorption and stay in the gut for a long time. The role of the gut microbiota in the anti-hypertensive effects of EU is unclear. Here, we examined the anti-hypertensive effects of EU in high-salt diet and N(omega)-nitro-L-arginine methyl ester (L-NAME) induced mice. After receiving EU for 6 weeks, the blood pressure was significantly reduced and the kidney injury was improved. Additionally, EU restored the levels of inflammatory cytokines, such as serum interleukin (IL)-6 and IL-17A, and renal IL-17A. The diversity and composition of the gut microbiota were influenced by administration of EU; 40 significantly upregulated and 107 significantly downregulated amplicon sequence variants (ASVs) were identified after administration of EU. ASV403 (Parabacteroides) was selected as a potential anti-hypertensive ASV. Its closest strain XGB65 was isolated. Furthermore, animal studies confirmed that Parabacteroides strain XGB65 exerted anti-hypertensive effects, possibly by reducing levels of inflammatory cytokines, such as renal IL-17A. Our study is the first to report that EU reduces blood pressure by regulating the gut microbiota, and it enriches the Parabacteroides strain, which exerts anti-hypertensive effects. These findings provide directions for developing novel anti-hypertensive treatments by combining probiotics and prebiotics.

4.
Animal Model Exp Med ; 5(6): 513-531, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35880388

RESUMO

Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases. Recent studies have indicated that the development of hypertension is related to the dysbiosis of the gut microbiota in both animals and humans. In this review, we outline the interaction between gut microbiota and hypertension, including gut microbial changes in hypertension, the effect of microbial dysbiosis on blood pressure (BP), indicators of gut microbial dysbiosis in hypertension, and the microbial genera that affect BP at the taxonomic level. For example, increases in Lactobacillus, Roseburia, Coprococcus, Akkermansia, and Bifidobacterium are associated with reduced BP, while increases in Streptococcus, Blautia, and Prevotella are associated with elevated BP. Furthermore, we describe the potential mechanisms involved in the regulation between gut microbiota and hypertension. Finally, we summarize the commonly used treatments of hypertension that are based on gut microbes, including fecal microbiota transfer, probiotics and prebiotics, antibiotics, and dietary supplements. This review aims to find novel potential genera for improving hypertension and give a direction for future studies on gut microbiota in hypertension.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Probióticos , Animais , Humanos , Pressão Sanguínea , Disbiose/complicações , Disbiose/terapia , Probióticos/uso terapêutico , Hipertensão/complicações , Hipertensão/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA