Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2022, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448412

RESUMO

Surface-enhanced Raman spectroscopy (SERS) harnesses the confinement of light into metallic nanoscale hotspots to achieve highly sensitive label-free molecular detection that can be applied for a broad range of sensing applications. However, challenges related to irreversible analyte binding, substrate reproducibility, fouling, and degradation hinder its widespread adoption. Here we show how in-situ electrochemical regeneration can rapidly and precisely reform the nanogap hotspots to enable the continuous reuse of gold nanoparticle monolayers for SERS. Applying an oxidising potential of +1.5 V (vs Ag/AgCl) for 10 s strips a broad range of adsorbates from the nanogaps and forms a metastable oxide layer of few-monolayer thickness. Subsequent application of a reducing potential of -0.80 V for 5 s in the presence of a nanogap-stabilising molecular scaffold, cucurbit[5]uril, reproducibly regenerates the optimal plasmonic properties with SERS enhancement factors ≈106. The regeneration of the nanogap hotspots allows these SERS substrates to be reused over multiple cycles, demonstrating ≈5% relative standard deviation over at least 30 cycles of analyte detection and regeneration. Such continuous and reliable SERS-based flow analysis accesses diverse applications from environmental monitoring to medical diagnostics.

2.
ACS Sens ; 8(7): 2879-2888, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37411019

RESUMO

We demonstrate the reliable creation of multiple layers of Au nanoparticles in random close-packed arrays with sub-nm gaps as a sensitive surface-enhanced Raman scattering substrate. Using oxygen plasma etching, all the original molecules creating the nanogaps can be removed and replaced with scaffolding ligands that deliver extremely consistent gap sizes below 1 nm. This allows precision tailoring of the chemical environment of the nanogaps which is crucial for practical Raman sensing applications. Because the resulting aggregate layers are easily accessible from opposite sides by fluids and by light, high-performance fluidic sensing cells are enabled. The ability to cyclically clean off analytes and reuse these films is shown, exemplified by sensing of toluene, volatile organic compounds, and paracetamol, among others.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Análise Espectral Raman/métodos
3.
Anal Chim Acta ; 1160: 338430, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33894964

RESUMO

To address the need for low-cost analytical tools for on-site aquaculture water quality monitoring, miniaturized electrochemical sensor systems can be readily fabricated using additive manufacturing technologies such as 3D printing and inkjet printing. In this work, we report the design and fabrication of an additively manufactured electrochemical platform featuring a reusable 3D-printed electrochemical cell with integrated reference and counter electrodes, and a replaceable inkjet-printed Ag (IJP-Ag) working electrode. The electrochemical cell was 3D-printed with acrylonitrile butadiene styrene (ABS) filament and features a 3D-printed ABS-carbon counter electrode and a Ag|AgCl|gel-KCl reference electrode with a 3D-printed porous junction directly integrated along the sides of the sample compartment. The application of the integrated cell is demonstrated with the analysis of nitrate ions on the IJP-Ag electrode, which was modified with electrodeposited nanostructured Ag to enhance sensitivity to nitrate reduction. Linear sweep voltammetry (LSV) was successfully applied to detect nitrate with a LOD of 1.40 ppm and a sensitivity of 0.2086 µA ppm-1 in a background of artificial brackish aquaculture water (pH 8.0). The sensor response showed intra- and inter-electrode reproducibility and no significant interferences to most of the commonly encountered cations and anions in brackish water. The electrochemical sensor system was also applied to nitrate determination in real aquaculture water samples and demonstrated no significant differences with the results obtained using the standard spectrophotometric method at a 95% confidence level. Our results show how additive manufacturing is a promising approach to readily fabricate fit-for-purpose, low-cost miniaturized electrochemical sensor systems for point-of-use applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA