Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Magn Reson Imaging ; 96: 27-37, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36396004

RESUMO

Skeletal muscle perfusion and oxygenation are commonly evaluated using Doppler ultrasound and near-infrared spectroscopy (NIRS) techniques. However, a recently developed magnetic resonance imaging (MRI) sequence, termed PIVOT, permits the simultaneous collection of skeletal muscle perfusion and T2* (an index of skeletal muscle oxygenation). PURPOSE: To determine the level of agreement between PIVOT, Doppler ultrasound, and NIRS-based assessments of skeletal muscle perfusion and oxygenation. METHODS: Twelve healthy volunteers (8 females, 25 ± 3 years, 170 ± 11 cm, 71.5 ± 8.0 kg) performed six total reactive hyperemia protocols. During three of these reactive hyperemia protocols, Tissue Saturation Index (TSI) and oxygenated hemoglobin (O2Hb) were recorded from the medial gastrocnemius (MG) and tibialis anterior (TA), and blood flow velocity was recorded from the popliteal artery (BFvpop) via Doppler Ultrasound. The other three trials were performed inside the bore of a 3 T MRI scanner, and the PIVOT sequence was used to assess perfusion (PIVOTperf) and oxygenation (T2*) of the medial gastrocnemius and tibialis anterior muscles. Positive incremental areas under the curve (iAUC) and times to peak (TTP) were calculated for each variable, and the level of agreement between collection methods was evaluated via Bland-Altman analyses and Spearman's Rho correlation analyses. RESULTS: The only significant bivariate relationships observed were between the T2* vs. TSI iAUC and PIVOTperf vs. BFvpop values recorded from the MG. Significant mean differences were observed for all comparisons (all P ≤ 0.038), and significant proportional biases were observed for the PIVOTperf vs. tHb TTP (R2 = 0.848, P < 0.001) and T2* vs. TSI TTP comparisons in the TA (R2 = 0.488, P = 0.011), and the PIVOTperf vs. BFvpop iAUC (R2 = 0.477, P = 0.013) and time to peak (R2 = 0.851, P < 0.001) comparisons in the MG. CONCLUSIONS: Our findings suggest that the PIVOT technique has, at best, a moderate level of agreement with Doppler ultrasound and NIRS assessment methods and is subject to significant proportional bias. These findings do not challenge the accuracy of either measurement technique but instead reflect differences in the vascular compartments, sampling volumes, and parameters being evaluated.


Assuntos
Hiperemia , Imageamento por Ressonância Magnética Multiparamétrica , Feminino , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Oxigênio , Perfusão , Ultrassonografia Doppler , Músculo Esquelético/fisiologia
2.
Magn Reson Med ; 86(6): 3292-3303, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272898

RESUMO

PURPOSE: Investigating the designs and effects of high dielectric constant (HDC) materials in the shape of a conformal helmet on the enhancement of RF field and reduction of specific absorption rate at 10.5 T for human brain studies. METHODS: A continuous and a segmented four-piece HDC helmet fit to a human head inside an eight-channel fractionated-dipole array were constructed and studied with a phantom and a human head model using computer electromagnetic simulations. The simulated transmit efficiency and receive sensitivity were experimentally validated using a phantom with identical electric properties and helmet-coil configurations of the computer model. The temporal and spatial distributions of displacement currents on the HDC helmets were analyzed. RESULTS: Using the continuous HDC helmet, simulation results in the human head model demonstrated an average transmit efficiency enhancement of 66%. A propagating displacement current was induced on the continuous helmet, leading to an inhomogeneous RF field enhancement in the brain. Using the segmented four-piece helmet design to reduce this effect, an average 55% and 57% enhancement in the transmit efficiency and SNR was achieved in human head, respectively, along with 8% and 28% reductions in average and maximum local specific absorption rate. CONCLUSION: The HDC helmets enhanced the transmit efficiency and SNR of the dipole array coil in the human head at 10.5 T. The segmentation of the helmet to disrupt the continuity of circumscribing displacement currents in the helmet produced a more uniform distribution of the transmit field and lower specific absorption rate in the human head compared with the continuous helmet design.


Assuntos
Dispositivos de Proteção da Cabeça , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Ondas de Rádio
3.
Eur J Appl Physiol ; 121(9): 2595-2606, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34106324

RESUMO

PURPOSE: Although it is known that peripheral arterial disease (PAD) is associated with chronic myopathies, the acute muscular responses to exercise in this population are less clear. This study used diffusion tensor imaging (DTI) to compare acute exercise-related muscle damage between PAD patients and healthy controls. METHODS: Eight PAD patients and seven healthy controls performed graded plantar flexion in the bore of a 3T MRI scanner. Exercise began at 2 kg and increased by 2 kg every 2 min until failure, or completion of 10 min of exercise. DTI images were acquired from the lower leg pre- and post-exercise, and were analyzed for mean diffusivity, fractional anisotropy (FA), and eigenvalues 1-3 (λ1-3) of the medial gastrocnemius (MG) and tibialis anterior (TA). RESULTS: Results indicated a significant leg by time interaction for mean diffusivity, explained by a significantly greater increase in diffusivity of the MG in the most affected legs of PAD patients (11.1 × 10-4 ± 0.5 × 10-4 mm2/s vs. 12.7 × 10-4 ± 1.2 × 10-4 mm2/s at pre and post, respectively, P = 0.02) compared to healthy control subjects (10.8 × 10-4 ± 0.3 × 10-4 mm2/s vs. 11.2 × 10-4 ± 0.5 × 10-4 mm2/s at pre and post, respectively, P = 1.0). No significant differences were observed for the TA, or λ1-3 (all P ≥ 0.06). Moreover, no reciprocal changes were observed for FA in either group (all P ≥ 0.29). CONCLUSION: These data suggest that calf muscle diffusivity increases more in PAD patients compared to controls after exercise. These findings are consistent with the notion that acute exercise results in increased muscle damage in PAD.


Assuntos
Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/patologia , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/patologia , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Appl Physiol (1985) ; 130(1): 48-56, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33211597

RESUMO

One in three Americans suffer from kidney diseases such as chronic kidney disease, and one of the etiologies is suggested to be long-term renal hypoxia. Interestingly, sympathetic nervous system activation evokes a renal vasoconstrictor effect that may limit oxygen delivery to the kidney. In this report, we sought to determine if sympathetic activation evoked by lower body negative pressure (LBNP) would decrease cortical and medullary oxygenation in humans. LBNP was activated in a graded fashion (LBNP; -10, -20, and -30 mmHg), as renal oxygenation was measured (T2*, blood oxygen level dependent, BOLD MRI; n = 8). At a separate time, renal blood flow velocity (RBV) to the kidney was measured (n = 13) as LBNP was instituted. LBNP significantly reduced RBV (P = 0.041) at -30 mmHg of LBNP (Δ-8.17 ± 3.75 cm/s). Moreover, both renal medullary and cortical T2* were reduced with the graded LBNP application (main effect for the level of LBNP P = 0.0008). During recovery, RBV rapidly returned to baseline, whereas medullary T2* remained depressed into the first minute of recovery. In conclusion, sympathetic activation reduces renal blood flow and leads to a significant decrease in oxygenation in the renal cortex and medulla.NEW & NOTEWORTHY In healthy young adults, increased sympathetic activation induced by lower body negative pressure, led to a decrease in renal cortical and medullary oxygenation measured by T2*, a noninvasive magnetic resonance derived index of deoxyhemoglobin levels. In this study, we observed a significant decrease in renal cortical and medullary oxygenation with LBNP as well as an increase in renal vasoconstriction. We speculate that sympathetic renal vasoconstriction led to a significant reduction in tissue oxygenation by limiting oxygen delivery to the renal medulla.


Assuntos
Pressão Negativa da Região Corporal Inferior , Circulação Renal , Humanos , Rim , Sistema Nervoso Simpático , Vasoconstrição , Adulto Jovem
5.
Subst Abuse ; 14: 1178221820904140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095075

RESUMO

BACKGROUND: Public health concerns over the addictive potential of electronic cigarettes (e-cigs) have heightened in recent years. Brain function during e-cig use could provide an objective measure of the addictive potential of new vaping products to facilitate research; however, there are limited methods for delivering e-cig aerosols during functional magnetic resonance imaging (fMRI). The current study describes the development and feasibility testing of a prototype to deliver up to four different e-cig aerosols during fMRI. METHODS: Standardized methods were used to test the devices' air flow variability, nicotine yield, and free radical production. MRI scans were run with and without the device present to assess its safety and effects on MRI data quality. Five daily smokers were recruited to assess plasma nicotine absorption from e-liquids containing nicotine concentrations of 8, 11, 16, 24, and 36 mg/ml. Feedback was collected from participants through a semi-structured interview and computerized questionnaire to assess comfort and subjective experiences of inhaling aerosol from the device. RESULTS: Nicotine yield captured from the aerosol produced by the device was highly correlated with the nicotine concentration of the e-liquids used (R2 = 0.965). Nicotine yield was reduced by a mean of 48% and free radical production by 17% after traveling through the device. The e-liquid containing the highest nicotine concentration tested (36 mg/ml) resulted in the highest plasma nicotine boost (6.6 ng/ml). Overall, participants reported that the device was comfortable to use and inhaling the e-cig aerosols was tolerable. The device was determined to be safe for use during fMRI and had insignificant effects on scan quality. CONCLUSIONS: With the current project, we were able to design a working prototype that safely and effectively delivers e-cig aerosols during fMRI. The device has the potential to be used to assess brain activation during e-cig use and to compare brain reactivity to varying flavors, nicotine concentrations, and other e-cig characteristics.

6.
Magn Reson Med ; 83(3): 1123-1134, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31502708

RESUMO

PURPOSE: To present a 3T brain imaging study using a conformal prototype helmet constructed with an ultra-high dielectric constant (uHDC; εr ~ 1000) materials that can be inserted into standard receive head-coils. METHODS: A helmet conformal to a standard human head constructed with uHDC materials was characterized through electromagnetic simulations and experimental work. The signal-to-noise ratio (SNR), transmit efficiency, and power deposition with the uHDC helmet inserted within a 20-channel head coil were measured in vivo and compared with a 64-channel head coil and the 20-channel coil without the helmet. Seven healthy volunteers were analyzed. RESULTS: Simulation and in vivo experimental results showed that transmit efficiency was improved by nearly 3 times within localized regions for a quadrature excitation, with a measured global increase of 58.21 ± 6.54% over 7 volunteers. The use of a parallel transmit spokes pulse compensated for severe degradation of B1+ homogeneity, at the expense of higher global and local specific absorption rate levels. A SNR histogram analysis with statistical testing demonstrated that the uHDC helmet enhanced a 20-channel head coil to the level of the 64-channel head coil, with the improvements mainly within the cortical brain regions. CONCLUSION: A prototype uHDC helmet enhanced the SNR of a standard head coil to the level of a high density 64-channel coil, although transmit homogeneity was compromised. Further improvements in SNR may be achievable with optimization of this technology, and could be a low-cost approach for future radiofrequency engineering work in the brain at 3T.


Assuntos
Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Posicionamento do Paciente/instrumentação , Imagens de Fantasmas , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Radiação Eletromagnética , Feminino , Voluntários Saudáveis , Humanos , Neuroimagem , Posicionamento do Paciente/métodos , Ondas de Rádio , Reprodutibilidade dos Testes , Razão Sinal-Ruído
7.
Physiol Rep ; 7(20): e14243, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31637857

RESUMO

It is unclear if the exaggerated exercise pressor reflex observed in peripheral arterial disease (PAD) patients facilitates Oxygen (O2 ) transport during presymptomatic exercise. Accordingly, this study compared O2 transport between PAD patients and healthy controls during graded presymptomatic work. Seven PAD patients and seven healthy controls performed dynamic plantar flexion in the bore of a 3T MRI scanner. Perfusion, T2 * (an index of relative tissue oxygenation), and SvO2 (a measure of venous oxygen saturation) were collected from the medial gastrocnemius (MG) during the final 10 seconds of each stage. Blood pressure was also collected during the final minute of each stage. As expected, the pressor response to presymptomatic work (4 kg) was exaggerated in PAD patients compared to controls (+14 mmHg ± 4 and +7 mmHg ± 2, P ≤ 0.034). When normalized to changes in free water content (S0 ), T2 * was lower at 2 kg in PAD patients compared to controls (-0.91 Δms/ΔAU ± 0.3 and 0.57 Δms/ΔAU ± 0.3, P ≤ 0.008); followed by a greater increase in perfusion at 4 kg in the PAD group (+18.8 mL/min/100g ± 6.2 vs. -0.21 mL/min/100g ± 3.2 in PAD and controls, P ≤ 0.026). Lastly, SvO2 decreased at 4 kg in both groups (-13% ± 4 and -2% ± 4 in PAD and controls, P ≤ 0.049), suggesting an increase in O2 extraction in the PAD group. Based on these findings, O2 transport appears to be augmented during graded presymptomatic work in PAD patients, and this may be partially mediated by an exaggerated pressor response.


Assuntos
Pressão Sanguínea/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Doença Arterial Periférica/fisiopatologia , Reflexo/fisiologia , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Oxigênio/sangue , Fluxo Sanguíneo Regional/fisiologia
8.
Magn Reson Med ; 79(5): 2842-2851, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28948637

RESUMO

PURPOSE: Incorporating high dielectric constant (HDC) materials into radiofrequency (RF) coils has been shown to effectively improve RF coil performance at 7 and 3 T because of the induced displacement current in the high dielectric constant materials. The displacement current is proportional to the RF field frequency and permittivity of the material. The aim of this paper is to investigate the effect of high dielectric constant materials with even greater permittivity on the RF field at 1.5 T and 3 T. METHODS: Several monolithic ceramic materials with an ultrahigh dielectric constant ranging from 1200 to 3300 were investigated at 1.5 T and 3 T with phantom and human brain imaging along with computer modeling. RESULTS: Experimental measurements in phantom studies showed a significant enhancement of signal-to-noise ratio (50-100%) and strong transmission power reduction (3-27-fold). Under suboptimal experimental conditions in this study, the signal-to-noise ratio in the human brain cortex was nearly doubled, which produced high-resolution image without the associated stronger magnetic susceptibility artifacts and elevated specific absorption rate concerns at higher field strengths. CONCLUSIONS: Use of ultrahigh dielectric constant ceramic materials is a simple and low-cost approach that could further improve the RF technology to maximize image signal-to-noise ratio and reduce RF energy deposition for human studies. Magn Reson Med 79:2842-2851, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Cerâmica/química , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Masculino , Imagens de Fantasmas , Razão Sinal-Ruído
9.
J Magn Reson Imaging ; 46(1): 40-48, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27783446

RESUMO

PURPOSE: To evaluate the dynamic characteristics of T2* -weighted signal change in exercising skeletal muscle of healthy subjects and peripheral artery disease (PAD) patients under a low-intensity exercise paradigm. MATERIALS AND METHODS: Nine PAD patients and nine age- and sex-matched healthy volunteers underwent a low-intensity exercise paradigm while magnetic resonance imaging (MRI) (3.0T) was obtained. T2*-weighted signal time-courses in lateral gastrocnemius, medial gastrocnemius, soleus, and tibialis anterior were acquired and analyzed. Correlations were performed between dynamic T2*-weighted signal and changes in heart rate, mean arterial pressure, leg pain, and perceived exertion. RESULTS: A significant signal decrease was observed during exercise in soleus and tibialis anterior of healthy participants (P = 0.0007-0.04 and 0.001-0.009, respectively). In PAD, negative signals were observed (P = 0.008-0.02 and 0.003-0.01, respectively) in soleus and lateral gastrocnemius during the early exercise stage. Then the signal gradually increased above the baseline in the lateral gastrocnemius during and after exercise in six of the eight patients who completed the study. This signal increase in patients' lateral gastrocnemius was significantly greater than in healthy subjects' during the later exercise stage (two-sample t-tests, P = 0.001-0.03). Heart rate and mean arterial pressure responses to exercise were significantly higher in PAD than healthy subjects (P = 0.036 and 0.008, respectively) and the patients experienced greater leg pain and exertion (P = 0.006 and P = 0.0014, respectively). CONCLUSION: During low-intensity exercise, there were different dynamic T2*-weighted signal behavior in the healthy and PAD exercising muscles. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:40-48.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Teste de Esforço/métodos , Angiografia por Ressonância Magnética/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/diagnóstico por imagem , Doença Arterial Periférica/diagnóstico por imagem , Idoso , Feminino , Humanos , Perna (Membro)/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Doença Arterial Periférica/patologia , Esforço Físico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Physiol Rep ; 4(20)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27798357

RESUMO

Blood-oxygen-level-dependent magnetic resonance imaging (BOLD MRI) has the potential to quantify skeletal muscle oxygenation with high temporal and high spatial resolution. The purpose of this study was to characterize skeletal muscle BOLD responses during steady-state plantar flexion exercise (i.e., during the brief rest periods between muscle contraction). We used three different imaging modalities (ultrasound of the popliteal artery, BOLD MRI, and near-infrared spectroscopy [NIRS]) and two different exercise intensities (2 and 6 kg). Six healthy men underwent three separate protocols of dynamic plantar flexion exercise on separate days and acute physiological responses were measured. Ultrasound studies showed the percent change in popliteal velocity from baseline to the end of exercise was 151 ± 24% during 2 kg and 589 ± 145% during 6 kg. MRI studies showed an abrupt decrease in BOLD signal intensity at the onset of 2 kg exercise, indicating deoxygenation. The BOLD signal was further reduced during 6 kg exercise (compared to 2 kg) at 1 min (-4.3 ± 0.7 vs. -1.2 ± 0.4%, P < 0.001). Similarly, the change in the NIRS muscle oxygen saturation in the medial gastrocnemius was -11 ± 4% at 2 kg and -38 ± 11% with 6 kg (P = 0.041). In conclusion, we demonstrate that BOLD signal intensity decreases during plantar flexion and this effect is augmented at higher exercise workloads.


Assuntos
Imageamento por Ressonância Magnética/métodos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Artéria Poplítea/diagnóstico por imagem , Adulto , Exercício Físico/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ultrassonografia/métodos , Adulto Jovem
11.
Magn Reson Med ; 73(4): 1420-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24753099

RESUMO

PURPOSE: Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency shift temperature imaging for MRI-induced radiofrequency heating evaluation. METHODS: A compressed sensing approach that exploits sparsity of the complex difference between postheating and baseline images is proposed to accelerate proton resonance frequency temperature mapping. The method exploits the intra-image and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex vivo and in vivo studies by comparing performance with previously published techniques. RESULTS: The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local proton resonance frequency temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo. CONCLUSION: Complex difference based compressed sensing with utilization of a fully sampled baseline image improves the reconstruction accuracy for accelerated proton resonance frequency thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of radiofrequency heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance.


Assuntos
Temperatura Corporal/fisiologia , Compressão de Dados/métodos , Antebraço/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Termografia/métodos , Algoritmos , Temperatura Corporal/efeitos da radiação , Simulação por Computador , Antebraço/efeitos da radiação , Humanos , Aumento da Imagem/métodos , Campos Magnéticos , Modelos Biológicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Magn Reson Med ; 71(5): 1923-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23804188

RESUMO

PURPOSE: To compare numerically simulated and experimentally measured temperature increase due to specific energy absorption rate from radiofrequency fields. METHODS: Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of magnetic resonance thermography. The phantom and forearm were also modeled from magnetic resonance image data, and both specific energy absorption rate and temperature change as induced by the same coil were simulated numerically. RESULTS: The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. CONCLUSION: Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in magnetic resonance imaging. R01 EB006563


Assuntos
Absorção de Radiação , Temperatura Corporal/fisiologia , Antebraço/fisiologia , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Temperatura Corporal/efeitos da radiação , Simulação por Computador , Antebraço/efeitos da radiação , Humanos , Temperatura , Termografia/métodos
13.
Magn Reson Med ; 72(1): 237-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24006153

RESUMO

PURPOSE: To describe and introduce new software capable of accurately simulating MR signal, noise, and specific absorption rate (SAR) given arbitrary sample, sequence, static magnetic field distribution, and radiofrequency magnetic and electric field distributions for each transmit and receive coil. THEORY AND METHODS: Using fundamental equations for nuclear precession and relaxation, signal reception, noise reception, and calculation of SAR, a versatile MR simulator was developed. The resulting simulator was tested with simulation of a variety of sequences demonstrating several common imaging contrast types and artifacts. The simulation of intravoxel dephasing and rephasing with both tracking of the first order derivatives of each magnetization vector and multiple magnetization vectors was examined to ensure adequate representation of the MR signal. A quantitative comparison of simulated and experimentally measured SNR was also performed. RESULTS: The simulator showed good agreement with our expectations, theory, and experiment. CONCLUSION: With careful design, an MR simulator producing realistic signal, noise, and SAR for arbitrary sample, sequence, and fields has been created. It is hoped that this tool will be valuable in a wide variety of applications.


Assuntos
Imageamento por Ressonância Magnética/métodos , Software , Artefatos , Simulação por Computador , Campos Eletromagnéticos , Cabeça , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Razão Sinal-Ruído
14.
Magn Reson Med ; 70(1): 269-75, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22890908

RESUMO

Passive dielectric materials have been used to improve aspects of MRI by affecting the distribution of radiofrequency electromagnetic fields. Recently, interest in such materials has increased with the number of high-field MRI sites. Here, we introduce a new material composed of sintered high-permittivity ceramic beads in deuterated water. This arrangement maintains the ability to create flexible pads for conforming to individual subjects. The properties of the material are measured and the performance of the material is compared to previously used materials in both simulation and experiment at 3 T. Results show that both permittivity of the beads and effect on signal-to-noise ratio and required transmit power in MRI are greater than those of materials consisting of ceramic powder in water. Importantly, use of beads results in both higher permittivity and lower conductivity than use of powder.


Assuntos
Cerâmica/química , Cerâmica/efeitos da radiação , Imageamento por Ressonância Magnética/instrumentação , Posicionamento do Paciente/instrumentação , Simulação por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Modelos Químicos , Imagens de Fantasmas
15.
Magn Reson Med ; 65(6): 1602-10, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21590802

RESUMO

Although spiral trajectories have multiple attractive features such as their isotropic resolution, acquisition efficiency, and robustness to motion, there has been limited application of these techniques to first-pass perfusion imaging because of potential off-resonance and inconsistent data artifacts. Spiral trajectories may also be less sensitive to dark-rim artifacts that are caused, at least in part, by cardiac motion. By careful consideration of the spiral trajectory readout duration, flip angle strategy, and image reconstruction strategy, spiral artifacts can be abated to create high-quality first-pass myocardial perfusion images with high signal-to-noise ratio. The goal of this article was to design interleaved spiral pulse sequences for first-pass myocardial perfusion imaging and to evaluate them clinically for image quality and the presence of dark-rim, blurring, and dropout artifacts.


Assuntos
Doença das Coronárias/diagnóstico , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Análise de Variância , Artefatos , Meios de Contraste , Gadolínio , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador
16.
Magn Reson Med ; 60(5): 1104-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18956462

RESUMO

Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.


Assuntos
Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Magn Reson Med ; 57(4): 721-30, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17390357

RESUMO

Linear magnetic field gradients spatially encode the image information in MRI. Concomitant gradients are undesired magnetic fields that accompany the desired gradients and occur as an unavoidable consequence of Maxwell's equations. These concomitant gradients result in undesired phase accumulation during MRI scans. Balanced steady-state free precession (bSSFP) is a rapid imaging method that is known to suffer from signal dropout from off-resonance phase accrual. In this work it is shown that concomitant gradient phase accrual can induce signal dropout in bSSFP. The spatial variation of the concomitant phase is explored and shown to be a function of gradient strength, slice orientation, phase-encoding (PE) direction, distance from isocenter, and main field strength. The effect on the imaging signal level was simulated and then verified in phantom and in vivo experiments. The nearest signal-loss artifacts occurred in scans that were offset from isocenter along the z direction with a transverse readout. Methods for eliminating these artifacts, such as applying compensatory frequency or shim offsets, are demonstrated. Concomitant gradient artifacts can occur at 1.5T, particularly in high-resolution scans or with additional main field inhomogeneity. These artifacts will occur closer to isocenter at field strengths below 1.5T because concomitant gradients are inversely proportional to the main field strength.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA