Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 13(1): 3841, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789154

RESUMO

Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function.


Assuntos
Distrofia Miotônica , Animais , Astrócitos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Distrofia Miotônica/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Aderências Teciduais
3.
Vox Sang ; 114(4): 330-339, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900265

RESUMO

BACKGROUND AND OBJECTIVES: Several sources of haematopoietic stem cells have been used for static culture of megakaryocytes to produce platelets in vitro. This study compares and characterizes platelets produced in shear flow using precursor cells from either umbilical (UCB) or adult peripheral blood (PB). MATERIALS AND METHODS: The efficiency of platelet production of the cultured cells was studied after perfusion in custom-built von Willebrand factor-coated microfluidic flow chambers. Platelet receptor expression and morphology were investigated by flow cytometry and microscopy, respectively. RESULTS: Proliferation of stem cells isolated out of UCB was significantly higher (P < 0·0001) compared to PB. Differentiation of these cells towards megakaryocytes was significantly lower from PB compared to UCB where the fraction of CD42b/CD41 double positive events was 44 ± 9% versus 76 ± 11%, respectively (P < 0·0001). However, in vitro platelet production under hydrodynamic conditions was more efficient with 7·4 platelet-like particles per input cell from PB compared to 4·2 from UCB (P = 0·02). The percentage of events positive for CD42b, CD41 and CD61 was comparable between both stem cell sources. The mean number of receptors per platelet from UCB and PB was similar to that on blood bank platelets with on average 28 000 CD42b, 57 000 CD61 and 5500 CD49b receptors. Microscopy revealed platelets appearing similar to blood bank platelets in morphology, size and actin cytoskeleton, alongside smaller fragments and source megakaryocytes. CONCLUSION: This characterization study suggests that platelets produced in vitro under flow either from UCB or from PB share receptor expression and morphology with donor platelets stored in the blood bank.


Assuntos
Plaquetas/citologia , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Dispositivos Lab-On-A-Chip , Citoesqueleto de Actina/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Citometria de Fluxo , Humanos , Integrina beta3/metabolismo , Megacariócitos/citologia , Microscopia , Fenótipo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Refrigeração
4.
Cell Rep ; 19(13): 2718-2729, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28658620

RESUMO

Brain function is compromised in myotonic dystrophy type 1 (DM1), but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with abnormal Purkinje cell firing and fine motor incoordination in DM1 mice. A global proteomics approach revealed downregulation of the GLT1 glutamate transporter in DM1 mice and human patients, which we found to be the result of MBNL1 inactivation. GLT1 downregulation in DM1 astrocytes increases glutamate neurotoxicity and is detrimental to neurons. Finally, we demonstrated that the upregulation of GLT1 corrected Purkinje cell firing and motor incoordination in DM1 mice. Our findings show that glial defects are critical in DM1 brain pathophysiology and open promising therapeutic perspectives through the modulation of glutamate levels.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Distrofia Miotônica/metabolismo , Células de Purkinje/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos , Camundongos Transgênicos
5.
Sci Rep ; 6: 21700, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898346

RESUMO

We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour). Since platelets are produced in such a large amount, their extensive biological characterisation is possible and shows that platelets produced in this bioreactor are functional.


Assuntos
Plaquetas/citologia , Sangue Fetal/citologia , Dispositivos Lab-On-A-Chip , Megacariócitos/citologia , Modelos Biológicos , Antígenos CD/fisiologia , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Biomimética , Reatores Biológicos , Plaquetas/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Sangue Fetal/fisiologia , Expressão Gênica , Humanos , Megacariócitos/fisiologia , Ativação Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Contagem de Plaquetas , Reologia , Estresse Mecânico
6.
Biochim Biophys Acta ; 1832(9): 1390-409, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23500957

RESUMO

Mutant ribonucleic acid (RNA) molecules can be toxic to the cell, causing human disease through trans-acting dominant mechanisms. RNA toxicity was first described in myotonic dystrophy type 1, a multisystemic disorder caused by the abnormal expansion of a non-coding trinucleotide repeat sequence. The development of multiple and complementary animal models of disease has greatly contributed to clarifying the complex disease pathways mediated by toxic RNA molecules. RNA toxicity is not limited to myotonic dystrophy and spreads to an increasing number of human conditions, which share some unifying pathogenic events mediated by toxic RNA accumulation and disruption of RNA-binding proteins. The remarkable progress in the dissection of disease pathobiology resulted in the rational design of molecular therapies, which have been successfully tested in animal models. Toxic RNA diseases, and in particular myotonic dystrophy, clearly illustrate the critical contribution of animal models of disease in translational research: from gene mutation to disease mechanisms, and ultimately to therapy development. This article is part of a Special Issue entitled: Animal Models of Disease.


Assuntos
Modelos Animais de Doenças , Distrofia Miotônica/etiologia , Distrofia Miotônica/terapia , RNA/toxicidade , Repetições de Trinucleotídeos/genética , Animais , Descoberta de Drogas , Humanos , RNA/genética
7.
Brain ; 136(Pt 3): 957-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404338

RESUMO

Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.


Assuntos
Comportamento Animal/fisiologia , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Adulto , Idoso , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Eletrofisiologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Distrofia Miotônica/complicações , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Expansão das Repetições de Trinucleotídeos
8.
Rare Dis ; 1: e25553, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25003003

RESUMO

The toxicity of expanded transcripts in myotonic dystrophy type 1 (DM1) is mainly mediated by the disruption of alternative splicing. However, the detailed disease mechanisms in the central nervous system (CNS) have not been fully elucidated. In our recent study, we demonstrated that the accumulation of mutant transcripts in the CNS of a mouse model of DM1 disturbs splicing in a region-specific manner. We now discuss that the spatial- and temporal-regulated expression of splicing factors may contribute to the region-specific spliceopathy in DM1 brains. In the search for disease mechanisms operating in the CNS, we found that the expression of expanded CUG-containing RNA affects the expression and phosphorylation of synaptic vesicle proteins, possibly contributing to DM1 neurological phenotypes. Although mediated by splicing regulators with a described role in DM1, the misregulation of synaptic proteins was not associated with missplicing of their coding transcripts, supporting the view that DM1 mechanisms in the CNS have also far-reaching implications beyond the disruption of a splicing program.

9.
Biochemistry ; 50(48): 10431-41, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22039883

RESUMO

The zinc finger protein EVI1 is causally associated with acute myeloid leukemogenesis, and inhibition of its function with a small molecule therapeutic may provide effective therapy for EVI1-expressing leukemias. In this paper we describe the development of a pyrrole-imidazole polyamide to specifically block EVI1 binding to DNA. We first identify essential domains for leukemogenesis through structure-function studies on both EVI1 and the t(3;21)(q26;q22)-derived RUNX1-MDS1-EVI1 (RME) protein, which revealed that DNA binding to the cognate motif GACAAGATA via the first of two zinc finger domains (ZF1, encompassing fingers 1-7) is essential transforming activity. To inhibit DNA binding via ZF1, we synthesized a pyrrole-imidazole polyamide 1, designed to bind to a subsite within the GACAAGATA motif and thereby block EVI1 binding. DNase I footprinting and electromobility shift assays revealed a specific and high affinity interaction between polyamide 1 and the GACAAGATA motif. In an in vivo CAT reporter assay using NIH-3T3-derived cell line with a chromosome-embedded tet-inducible EVI1-VP16 as well as an EVI1-responsive reporter, polyamide 1 completely blocked EVI1-responsive reporter activity. Growth of a leukemic cell line bearing overexpressed EVI1 was also inhibited by treatment with polyamide 1, while a control cell line lacking EVI1 was not. Finally, colony formation by RME was attenuated by polyamide 1 in a serial replating assay. These studies provide evidence that a cell permeable small molecule may effectively block the activity of a leukemogenic transcription factor and provide a valuable tool to dissect critical functions of EVI1 in leukemogenesis.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Inibidores do Crescimento/farmacologia , Imidazóis/farmacologia , Nylons/farmacologia , Pirróis/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Sistemas de Liberação de Medicamentos/métodos , Inibidores do Crescimento/química , Inibidores do Crescimento/metabolismo , Humanos , Imidazóis/química , Imidazóis/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1 , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Nylons/química , Nylons/metabolismo , Ligação Proteica/genética , Proto-Oncogenes/genética , Pirróis/química , Pirróis/metabolismo , Ratos , Retroviridae/genética , Fatores de Transcrição/genética
10.
Hum Mol Genet ; 20(R2): R116-23, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21821673

RESUMO

Expanded, non-coding RNAs can exhibit a deleterious gain-of-function causing human disease through abnormal interactions with RNA-binding proteins. Myotonic dystrophy (DM), the prototypical example of an RNA-dominant disorder, is mediated by trinucleotide repeat-containing transcripts that deregulate alternative splicing. Spliceopathy has therefore been a major focus of DM research. However, changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. The exciting finding of bidirectional transcription and non-conventional RNA translation of trinucleotide repeat sequences points to a new scenario, in which DM is not mediated by one single expanded RNA transcript, but involves multiple pathogenic elements and pathways. The study of the growing number of human diseases associated with toxic repeat-containing transcripts provides important insight into the understanding of the complex pathways of RNA toxicity. This review describes some of the recent advances in the understanding of the molecular mechanisms behind DM and other RNA-dominant disorders.


Assuntos
Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Repetições de Trinucleotídeos , Processamento Alternativo , Animais , Regulação da Expressão Gênica , Humanos , Distrofia Miotônica/metabolismo , Biossíntese de Proteínas , Expansão das Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA