Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 86, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355544

RESUMO

BACKGROUND: This ethnobotanical study in Dunyapur, District Lodhran, Pakistan, focuses on traditional medicinal knowledge, exploring 41 plants across 28 families. The research involves 496 informants from diverse backgrounds, including farmers, herbalists, housewives, teachers, and shopkeepers. The prevalence of herbs (68%) aligns with their accessibility and rapid regrowth, shaping the local medicinal landscape. The study investigates socio-demographic features, emphasizing the importance of considering the community's diverse perspectives. METHODS: The research employs quantitative ethnobotanical data analysis, introducing various indices like PPV, FUV, FIV, RFC, UV, and RI. The analysis of plant growth habits underscores the dominance of herbs, and the method of preparation evaluation identifies decoction as the most common (23%). Leaves (27%) are the most utilized plant part, and Resedaceae stands out with the highest FUV (0.38). FIV highlights the ecological and cultural significance of Poaceae, Boraginaceae, Fabaceae, and Solanaceae. RESULTS: The RFC values range from 0.016 to 0.032, with Cucumis melo having the highest value (0.032), indicating its frequent citation and cultural significance. The study reveals specific plants like Melia azedarach, Peganum harmala and Salvadora oleoides with high PR values for skin issues, reflecting their widespread acceptance and effectiveness. Oligomeris linifolia emerges with the highest UV (0.38), emphasizing its greater significance in local traditional practices. Leptadenia pyrotechnica records the highest RI (9.85), underlining its exceptional importance in the community's traditional pharmacopeia. CONCLUSION: The findings offer a holistic understanding of ethnobotanical knowledge in Dunyapur, emphasizing the role of local contexts and ecological factors in shaping traditional plant uses. The study contributes valuable insights into the diverse practices within the community, laying the foundation for sustainable integration of traditional knowledge into broader healthcare frameworks.


Assuntos
Plantas Medicinais , Humanos , Etnobotânica/métodos , Dieta , Paquistão , Pele
2.
BMC Plant Biol ; 24(1): 128, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383291

RESUMO

Salinity poses significant challenges to agricultural productivity, impacting crops' growth, morphology and biochemical parameters. A pot experiment of three months was conducted between February to April 2023 in the Department of Botany, The Islamia University of Bahawalpur. Four brinjal (eggplant) varieties: ICS-BR-1351, HBR-313-D, HBR-314-E, and HBR-334-D were selected and assessed for the effects of salinity on various growth and biochemical attributes. The experiment was completely randomized in design with three replicates each. This study revealed that increased salinity significantly reduced the shoot length, root length, and leaf number across all varieties, with maximum adverse effects observed at a 300mM NaCl concentration. Among the tested varieties, ICS-BR-1351 demonstrated superior performance in most growth parameters, suggesting potential salt tolerance. Biochemically, salinity decreased chlorophyll content across all varieties, with the sharpest decline observed at the highest salt concentration. V4 (HBR-334-D) showed a 57% decrease in chlorophyll followed by V3 (HBR-314-E) at 56%, V2 (HBR-313-D) at 54%, and V1 (ICS-BR-1351) at 33% decrease at maximum salt levels as compared to control. Conversely, carotenoid content increased up to -42.11% in V3 followed by V2 at -81.48%, V4 at -94.11%, and - 233% in V1 at 300mM NaCl stress as compared to respective controls. V3 (HBR-314-E) has the maximum value for carotenoids while V1 has the lowest value for carotenoids as compared to the other three brinjal varieties. In addition to pigments, the study indicated a salinity-induced decrease in total proteins and total soluble sugar, whereas total amino acids and flavonoids increased. Total proteins showed a decrease in V2 (49.46%) followed by V3 (36.44%), V4 (53.42%), and V1 (53.79%) at maximum salt concentration as compared to plants treated with tap water only. Whereas, total soluble sugars showed a decrease of 52.07% in V3, 41.53% in V2, 19.49% in V1, and 18.99% in V4 at the highest salt level. While discussing total amino acid, plants showed a -9.64% increase in V1 as compared to V4 (-31.10%), V2 (-36.62%), and V3 (-22.61%) with high salt levels in comparison with controls. Plant flavonoid content increased in V3 (-15.61%), V2 (-19.03%), V4 (-18.27%) and V1 (-27.85%) at 300mM salt concentration. Notably, salinity elevated the content of anthocyanin, lycopene, malondialdehyde (MDA), and hydrogen peroxide (H2O2) across all varieties. Antioxidant enzymes like peroxidase, catalase, and superoxide dismutase also increased under salt stress, suggesting an adaptive response to combat oxidative damage. However, V3 (HBR-314-E) has shown an increase in anthocyanin at -80.00%, lycopene at -24.81%, MDA at -168.04%, hydrogen peroxide at -24.22%, POD at -10.71%, CAT as-36.63 and SOD as -99.14% at 300mM NaCl stress as compared to control and other varieties. The enhanced accumulation of antioxidants and other protective compounds suggests an adaptive mechanism in brinjal to combat salt-induced oxidative stress. The salt tolerance of different brinjal varieties was assessed by principal component analysis (PCA), and the order of salt tolerance was V1 (ICS-BR-1351) > V4 (HBR-334-D), > V2 (HBR-313-D) > V3 (HBR-314-E). Among the varieties studied, ICS-BR-1351 demonstrated resilience against saline conditions, potentially offering a promising candidate for saline-prone agricultural areas.


Assuntos
Antioxidantes , Solanum melongena , Antocianinas , Antioxidantes/metabolismo , Carotenoides , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Licopeno , Salinidade , Tolerância ao Sal , Cloreto de Sódio/efeitos adversos , Solanum melongena/metabolismo
3.
Sci Rep ; 13(1): 19024, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923861

RESUMO

Soil salinization is a prevalent form of land degradation particularly in water-deficient regions threatening agricultural sustainability. Present desalinization methods demand excessive water use. Biochar has been recognized as a potential remedy for saline soils and Gibberellic acids (GA3) are known to mediate various biochemical processes aiding in stress mitigation. This study was undertaken at The Islamia University of Bahawalpur during winter 2022-23 to explore the combined effect of biochar and GA3 on wheat (Triticum aestivum L.) in saline conditions. Employing a fully randomized design wheat seeds in 24 pots were subjected to two salinity levels with three replications across eight treatments: T1 to T8 ranging from controls with different soil electrical conductivities (ECs) to treatments involving combinations of GA3, biochar and varying soil ECs. These treatments included T1 (control with soil EC of 2.43dS/m), T2 (salinity stress with soil EC of 5.11dS/m), T3 (10 ppm GA3 with soil EC of 2.43dS/m), T4 (10 ppm GA3 with soil EC of 5.11dS/m), T5 (0.75% Biochar with soil EC of 2.43dS/m), T6 (0.75% Biochar with soil EC of 5.11dS/m), T7 (10 ppm GA3 combined with 0.75% biochar at soil EC of 2.43dS/m) and T8 (10 ppm GA3 plus 0.75% biochar at soil EC of 5.11dS/m). The results indicated that the combined applications of GA3 and biochar significantly enhanced plant growth in saline conditions viz. germination rate by 73%, shoot length of 15.54 cm, root length of 4.96 cm, plant height of 16.89 cm, shoot fresh weight 43.18 g, shoot dry weight 11.57 g, root fresh weight 24.26 g, root dry weight 9.31 g, plant water content 60.77%, photosynthetic rate 18.58(CO2 m-2 s-1) carotenoid 3.03 g, chlorophyll a 1.01 g, chlorophyll b 0.69 g, total chlorophyll contents by 1.9 g as compared to the control. The findings suggest that the combined application of these agents offers a sustainable and effective strategy for cultivating wheat in saline soils. The synergy between biochar and GA3 presents a promising avenue for sustainable wheat cultivation in saline conditions. This combined approach not only improves plant growth but also offers an innovative, water-efficient solution for enhancing agricultural productivity in saline-affected regions.


Assuntos
Triticum , Verduras , Clorofila A , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Solo/química , Água , Solução Salina , Estresse Salino
4.
J Sci Food Agric ; 91(15): 2785-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21717466

RESUMO

BACKGROUND: Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. RESULTS: Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. CONCLUSION: Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents.


Assuntos
Antioxidantes/metabolismo , Carthamus tinctorius/metabolismo , Micronutrientes/metabolismo , Óleos de Plantas/metabolismo , Prolina/metabolismo , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia , Biomassa , Cálcio/metabolismo , Carthamus tinctorius/classificação , Carthamus tinctorius/enzimologia , Catalase/metabolismo , Ácido Palmítico/metabolismo , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Estruturas Vegetais/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Especificidade da Espécie , Estresse Fisiológico , Superóxido Dismutase/metabolismo , alfa-Tocoferol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA