Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 258: 119471, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914256

RESUMO

Organic dye and nitrophenol pollution from textiles and other industries present a substantial risk to people and aquatic life. One of the most essential remediation techniques is photocatalysis, which uses the strength of visible light to decolorize water. The present study reports Canthium Parviflorum (CNP) leaf extract utilization as an effective bio-reductant for green synthesis of Au NPs. A simple, eco-friendly process with low reaction time and temperature was adopted to synthesize CNP extract-mediated Au-NPs (CNP-AuNPs). The prepared AuNPs characterization involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS) surface area analysis, ultraviolet-visible spectroscopy (UV-Vis). XRD results showed that the cubic-structured AuNPs had a crystallite size of 14.12 nm. Assessment of organic dyes performance in degrading brilliant green (BTG) and amido black 10B (AMB) under visible light irradiation highlights an impressive 83.25% and 86% degradation efficiency within 120 min, accompanied by a kinetic rate constant dyes was found to be 0.0828 min⁻1, BTG, and 0.0123 min⁻1, Furthermore, the reduction of 4-nitrophenol by NaBH4 using CNP-AuNPs as a catalyst demonstrated good catalytic performance and rapid degradation at 89.4%. and rate constant 0.099 min-1 followed pseudo-first-order. The LC-MS analysis identified various intermediates during the degradation of the CR dye. Radical trapping experiments suggest that photogenerated free electrons and hydroxyl radicals are crucial for degrading the amido black 10B dye The AuNPs influenced the significant factors responsible for the photocatalytic activity, such as the increase in range of absorbance, increased e- and h+ pair separation, improvement in the charge transfer process, and active site formation, which significantly enhanced the process of degradation. We found that the CNP-AuNPs could effectively remove dyes and nitrophenol from industrial wastewater.

2.
ACS Omega ; 9(11): 13373-13381, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524482

RESUMO

Hybrid organic-inorganic perovskites have been investigated for their potential to serve in next-generation perovskite solar cells (PSCs). While PSC technology is approaching commercialization, thermal and moisture stabilities remain a concern. Here, we describe the assembly of PSCs using an imidazoanthraquinone derivative (AQ) as a small organic additive to enhance the device performance and stability. Unlike polymer additives, AQ is easy to synthesize and is more economical. AQ was synthesized because it has both carbonyl and imidazole functional groups. The presence of C=O and N-H groups results in coordination interaction with Pb2+ and I- of the perovskite. Addition of the AQ molecule to methylammonium lead iodide leads to the formation of a superior crystalline perovskite film with fewer defects and enhanced stability under humid conditions. The use of optimized perovskite films enhanced device power conversion efficiency (PCE = 17.21%) compared to pristine perovskite (PCE = 13.88%). Unencapsulated optimized devices retained 90% of the initial power conversion efficiency for 30 days at a relative humidity of nearly 35%. The optimized films also exhibited superior thermal stability to that of pristine perovskite films.

3.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838527

RESUMO

A linear-shaped small organic molecule (E)-4-(5-(3,5-dimethoxy-styryl)thiophen-2-yl)-7-(5″-hexyl-[2,2':5',2″-terthiophen]-5-yl)benzo[c][1,2,5]thiadiazole (MBTR) comprising a benzothiadiazole (BTD) acceptor linked with the terminal donors bithiophene and dimethoxy vinylbenzene through a π-bridge thiophene was synthesized and analyzed. The MBTR efficiently tuned the thermal, absorption, and emission characteristics to enhance the molecular packing and aggregation behaviors in the solid state. The obtained optical bandgap of 1.86 eV and low-lying highest occupied molecular orbital (HOMO) level of -5.42 eV efficiently lowered the energy losses in the fabricated devices, thereby achieving enhanced photovoltaic performances. The optimized MBTR:PC71BM (1:2.5 w/w%) fullerene-based devices showed a maximum power conversion efficiency (PCE) of 7.05%, with an open-circuit voltage (VOC) of 0.943 V, short-circuit current density (JSC) of 12.63 mA/cm2, and fill factor (FF) of 59.2%. With the addition of 3% 1,8-diiodooctane (DIO), the PCE improved to 8.76% with a high VOC of 1.02 V, JSC of 13.78 mA/cm2, and FF of 62.3%, which are associated with improved charge transport at the donor/acceptor interfaces owing to the fibrous active layer morphology and favorable phase separation. These results demonstrate that the introduction of suitable donor/acceptor groups in molecular design and device engineering is an effective approach to enhancing the photovoltaic performances of organic solar cells.


Assuntos
Fulerenos , Doadores de Tecidos , Humanos , Bandagens , Engenharia , Fadiga , Tiofenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA