Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 124: 282-290, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452989

RESUMO

We examined the effects of various acidic polysaccharides isolated from marine algae on the infection and replication of human immunodeficiency virus type-1 (HIV-1), hepatitis B virus (HBV), hepatitis C virus (HCV), and human T-cell leukemia virus type-1 (HTLV-1). It was found that sulfated fucan polysaccharides, ascophyllan, and two fucoidans derived from different sources significantly inhibited the early step of HIV-1 (R9 and JR-FL) infection, while they did not affect the late step. The alginate oligomer consisted of uronic acids and sulfated-galactan porphyran showed no significant inhibitory effects. In addition, ascophyllan and two fucoidans inhibited the early step of HBV infection in a dose-dependent manner. Furthermore, these polysaccharides inhibited the early step of HCV infection but had no inhibitory effects on HTLV-1 replication. To further examine the specificity of these polysaccharides in viral infections, we used vesicular stomatitis virus (VSV)-G-pseudotyped HIV-1 infection. Ascophyllan, the two fucoidans, and alginate oligomer also potently inhibited VSV-G-pseudotyped HIV-1 infection in HeLa cells. Taken together, these results suggest that the acidic polysaccharides used in this study are capable of inhibiting the early step of viral infections depending on the polysaccharides but not in a strict species-specific manner.


Assuntos
Organismos Aquáticos/química , Polissacarídeos/química , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Ácidos/química , Cianobactérias/química , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Hepacivirus/efeitos dos fármacos , Hepacivirus/patogenicidade , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Viroses/virologia
2.
PLoS Pathog ; 14(11): e1007372, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496280

RESUMO

Apolipoprotein E (ApoE) belongs to a class of cellular proteins involved in lipid metabolism. ApoE is a polymorphic protein produced primarily in macrophages and astrocytes. Different isoforms of ApoE have been associated with susceptibility to various diseases including Alzheimer's and cardiovascular diseases. ApoE expression has also been found to affect susceptibility to several viral diseases, including Hepatitis C and E, but its effect on the life cycle of HIV-1 remains obscure. In this study, we initially found that HIV-1 infection selectively up-regulated ApoE in human monocyte-derived macrophages (MDMs). Interestingly, ApoE knockdown in MDMs enhanced the production and infectivity of HIV-1, and was associated with increased localization of viral envelope (Env) proteins to the cell surface. Consistent with this, ApoE over-expression in 293T cells suppressed Env expression and viral infectivity, which was also observed with HIV-2 Env, but not with VSV-G Env. Mechanistic studies revealed that the C-terminal region of ApoE was required for its inhibitory effect on HIV-1 Env expression. Moreover, we found that ApoE and Env co-localized in the cells, and ApoE associated with gp160, the precursor form of Env, and that the suppression of Env expression by ApoE was cancelled by the treatment with lysosomal inhibitors. Overall, our study revealed that ApoE is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages that exerts its anti-HIV-1 activity through association with gp160 Env via the C-terminal region, which results in subsequent degradation of gp160 Env in the lysosomes.


Assuntos
Apolipoproteínas E/fisiologia , Infecções por HIV/metabolismo , Macrófagos/metabolismo , Adulto , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica/genética , Células HEK293 , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , HIV-1/metabolismo , Humanos , Macrófagos/virologia , Masculino , Regulação para Cima , Replicação Viral/genética , Replicação Viral/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
3.
Sci Rep ; 8(1): 15894, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367120

RESUMO

Long interspersed element-1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome. L1 utilizes an endonuclease to insert L1 cDNA into the target genomic DNA, which induces double-strand DNA breaks in the human genome and activates the DNA damage signaling pathway, resulting in the recruitment of DNA-repair proteins. This may facilitate or protect L1 integration into the human genome. Therefore, the host DNA repair machinery has pivotal roles in L1 mobility. In this study, we have, for the first time, demonstrated that the DNA repair protein, Rad18, restricts L1 mobility. Notably, overexpression of Rad18 strongly suppressed L1 retrotransposition as well as L1-mediated Alu retrotransposition. In contrast, L1 retrotransposition was enhanced in Rad18-deficient or knockdown cells. Furthermore, the Rad6 (E2 ubiquitin-conjugated enzyme)-binding domain, but not the Polη-binding domain, was required for the inhibition of L1 retrotransposition, suggesting that the E3 ubiquitin ligase activity of Rad18 is important in regulating L1 mobility. Accordingly, wild-type, but not the mutant Rad18-lacking Rad6-binding domain, bound with L1 ORF1p and sequestered with L1 ORF1p into the Rad18-nuclear foci. Altogether, Rad18 restricts L1 and Alu retrotransposition as a guardian of the human genome against endogenous retroelements.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células HCT116 , Células HEK293 , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Domínios Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA