RESUMO
Green synthesis methods offer a cost-effective and environmentally friendly approach to producing nanoparticles (NPs), particularly metal-based oxides. This study explores the green synthesis of copper oxide nanoparticles using Aloe vera (Aloe barbadensis Miller) leaf extract. The characterization revealed a unique sago-shaped morphology revealed by field-emission scanning electron microscopy and X-ray diffraction analysis. Distinctive metal-oxygen bonds at 521 and 601 cm-1 were confirmed by Fourier-transform infrared (FT-IR) spectroscopy. Furthermore, UV-visible spectroscopy revealed absorbance at 248 nm, suggesting electron transitions across energy bands and varying surface conduction electrons. The band gap value indicated the presence of quantum confinement effects, which were probably caused by the distinctive morphology and surface structure of the biogenic NPs. Additionally, molecular docking studies were carried out against key proteins of Salmonella typhi and Listeria monocytogenes, namely, listeriolysin O (PDB ID: 4CDB), internalin (InlA) (PDB ID: 1O6T), Salmonella effector protein (SopB) (PDB ID: 4DID), and YfdX (PDB ID: 6A07) using AutoDock 4.2. The results revealed binding energies against S. typhi and L. monocytogenes proteins, indicating potential interactions establishing the foundation for further in-depth understanding of the molecular basis underlying the observed antibacterial effects in vitro against S. typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, and L. monocytogenes. Antibacterial activity evaluation yielded impressive results, with CuO NPs displaying significant activity against S. typhi and L. monocytogenes, exhibiting zones of inhibition values of 13 ± 0.02 and 15 ± 0.04 mm, respectively. Moreover, the CuO NPs demonstrated remarkable photocatalytic efficacy, resulting in the degradation of 77% of the methylene blue dye when exposed to UV irradiation. This study highlighted the potential of green-synthesized CuO NPs derived from A. vera with their unique morphology, interesting spectroscopic properties, and promising antibacterial and photocatalytic activities.
RESUMO
Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
Assuntos
Ecossistema , Nanocompostos , Humanos , Celulose , PolímerosRESUMO
Kenaf fiber has recently garnered exponential interest as reinforcement in composite materials across diverse industries owing to its superior mechanical attributes, ease of manufacture, and inherent biodegradability. In the discourse of this review, various methods of manufacturing kenaf/Polylactic acid (PLA) composites have been discussed meticulously, as delineated in recently published scientific literatures. This paper delves into the chemical modification of kenaf fiber, examining its consequential impact on tensile strength and thermal stability of the kenaf/PLA composites. Further, this review illuminates the role of innovative 3D printing techniques and fiber orientation in augmenting the mechanical robustness of the kenaf/PLA composites. Simultaneously, recent insightful explorations into the acoustic properties of the kenaf/PLA composites, underscoring their potential as sustainable alternative to conventional materials have been reviewed. Serving as a comprehensive repository of knowledge, this review paper holds immense value for researchers aiming to utilize the capabilities of kenaf fiber reinforced PLA composites.
Assuntos
Hibiscus , Indústrias , Estruturas Vegetais , PoliésteresRESUMO
This paper studies a new response surface methodology (RSM) based on the central composite design (CCD) modeling method to optimize the photocatalytic degradation of methylene blue (MB) and methyl orange (MO) by using a synthesized ZnO/Alg bionanocomposite under UV irradiation. ZnO with different content of sodium alginate (Alg) (10, 20, and 30% by weight) has been synthesized by a one-step sol-gel method. Zinc oxide (ZnO) nanoparticles were impregnated on the alginate polymer. Various characterization techniques were used to describe the physical and chemical properties of each catalyst such as XRD, FTIR, UV-vis, PL, FESEM, Raman, and BET. The optimal catalyst for MB and MO photocatalytic degradation process was discussed mathematically as a function of catalyst dose, irradiation time, and MB and MO concentration, which was modeled by CCD-RSM based on a statistical model (quadratic regression) and an optimization process (ANOVA analysis). The photocatalytic degradation efficiency of 98% was achieved for the optimal conditions of a dye concentration of 20 mg L-1, the catalyst dose of 0.34 g L-1, and an irradiation time of 90 min at pH 6. The measurement result (R 2 = 0.9901) showed that the considered model is very suitable, and the selected CCD-RSM successfully optimized the photodegradation conditions of MB and MO.