Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227597

RESUMO

Ceramics are the oxides of metals and nonmetals with excellent compressive strength. Ceramics usually exhibit inert behavior at high temperatures. Magnesium aluminate (MgAl2O4), a member of the ceramic family, possesses a high working temperature up to 2000°C, low thermal conductivity, high strength even at elevated temperatures, and good corrosion resistance. Moreover, Magnesium Aluminate Nanoparticles (MANPs) can be used in the making of refractory crucible applications. This study focuses on the thermal behavior of Magnesium Aluminate Nanoparticles (MANPs) and their application in the making of refractory crucibles. The molten salt method is used to obtain MANPs. The presence of MANPs is seen by XRD peaks ranging from 66° to 67°. The determination of the smallest crystallite size of the sample is achieved by utilizing the Scherrer formula and is found to be 15.3 nm. The SEM micrographs provided further information, indicating an average particle size of 91.2 nm. At 600°C, DSC curves show that only 0.05 W/g heat flows into the material, and the TGA curve shows only 3% weight loss, which is prominent for thermal insulation applications. To investigate the thermal properties, crucibles of pure MANPs and the different compositions of MANPs and pure alumina are prepared. During the sintering, cracks appear on the crucible of pure magnesium aluminate. To explore the reason for crack development, tablets of MgAl2O4 are made and sintered at 1150°C. Ceramography shows the crack-free surfaces of all the tablets. Results confirm the thermal stability of MANPs at high temperatures and their suitability for melting crucible applications.


Assuntos
Compostos de Alumínio , Óxido de Alumínio , Compostos de Magnésio , Nanopartículas , Óxido de Magnésio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA