Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 7(22): 9818-9844, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29188011

RESUMO

Archival tagging studies of southern bluefin tuna (SBT , Thunnus maccoyii) have revealed that juveniles residing in the Great Australian Bight (GAB) over the austral summer undertake seasonal cyclic migrations to the southeast Indian Ocean and the Tasman Sea during winter. However, there remains disagreement about the extent of mixing between juvenile SBT regularly caught by longline fleets south of Africa and those observed in the GAB. Some researchers have argued that archival tag recoveries indicate most juveniles reside in the GAB over the austral summer. Others have suggested that recoveries of conventional and archival tags are better explained by a juvenile population consisting of separate groups on the eastern and western sides of the Indian Ocean with limited intermixing. We present analyses of catch and tag recovery data and re-examine archival tagging studies. The evidence provided strongly favors the hypothesis of separate juvenile subgroups, or contingents, with limited intermixing. We draw some tentative conclusions about the nature of the putative contingents and discuss some implications of these findings for the interpretation of existing datasets and future research priorities. We also provide the first evidence that the migration choices of juveniles that summer in the GAB are influenced by fidelity to winter feeding grounds and suggest this helps explain the collapse of the surface fishery off New South Wales in the 1980s.

2.
Bull Math Biol ; 78(1): 169-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26733222

RESUMO

Waterborne parasites that infect both humans and animals are common causes of diarrhoeal illness, but the relative importance of transmission between humans and animals and vice versa remains poorly understood. Transmission of infection from animals to humans via environmental reservoirs, such as water sources, has attracted attention as a potential source of endemic and epidemic infections, but existing mathematical models of waterborne disease transmission have limitations for studying this phenomenon, as they only consider contamination of environmental reservoirs by humans. This paper develops a mathematical model that represents the transmission of waterborne parasites within and between both animal and human populations. It also improves upon existing models by including animal contamination of water sources explicitly. Linear stability analysis and simulation results, using realistic parameter values to describe Giardia transmission in rural Australia, show that endemic infection of an animal host with zoonotic protozoa can result in endemic infection in human hosts, even in the absence of person-to-person transmission. These results imply that zoonotic transmission via environmental reservoirs is important.


Assuntos
Modelos Biológicos , Doenças Transmitidas pela Água/transmissão , Zoonoses/transmissão , Animais , Criptosporidiose/transmissão , Reservatórios de Doenças/parasitologia , Giardíase/transmissão , Humanos , Conceitos Matemáticos , Água/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA