Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Genetics ; 151(1): 45-55, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9872947

RESUMO

Ankyrin (ANK) repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins of eukaryotes and prokaryotes. These repeats are thought to serve as protein association domains. In Swi6, ANK repeats affect DNA binding of both the Swi4/Swi6 and Mbp1/Swi6 complexes. We have previously described generation of random mutations within the ANK repeats of Swi6 that render the protein temperature sensitive in its ability to activate HO transcription. Two of these SWI6 mutants were used in a screen for high copy suppressors of this phenotype. We found that MSN1, which encodes a transcriptional activator, and NHP6A, which encodes an HMG-like protein, are able to suppress defective Swi6 function. Both of these gene products are involved in HO transcription, and Nhp6A may also be involved in CLN1 transcription. Moreover, because overexpression of NHP6A can suppress caffeine sensitivity of one of the SWI6 ANK mutants, swi6-405, other SWI6-dependent genes may also be affected by Nhp6A. We hypothesize that Nhp6A and Msn1 modulate Swi6-dependent gene transcription indirectly, through effects on chromatin structure or other transcription factors, because we have not been able to demonstrate that either Msn1 or Nhp6A interact with the Swi4/Swi6 complex.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Imediatamente Precoces , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Anquirinas/genética , Cafeína/farmacologia , DNA Fúngico/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas HMGN , Óperon Lac , Mutagênese , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Temperatura , Transcrição Gênica
3.
Biochemistry ; 37(13): 4437-50, 1998 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-9521763

RESUMO

The Swi4-Swi6 family of transcription factors confers G1/S specific transcription in budding and fission yeast. These proteins contain four ankyrin repeats, which are present in a large number of functionally diverse proteins and have been shown to be important for protein-protein interaction. However, no specific sequence has been identified that is diagnostic of an ankyrin repeat-interacting protein. To determine the function of the ankyrin repeats of Swi6, we generated both random and site-directed mutations within the ankyrin repeat domain of Swi6 and assayed the transcriptional function of these mutant swi6 alleles. We found six single mutations, scattered within the first and the fourth repeats, that generate a temperature-sensitive Swi6 protein. In addition, we found that alanine substitutions for the most conserved residues in each repeat were highly deleterious and also confer temperature sensitivity. Most of these swi6 alleles are able to form ternary complexes with Swi4 and DNA, but these complexes display reduced mobility in band-shift gels, suggesting a dramatic conformational change. We have modeled the ankyrin repeats of Swi6 using the coordinates derived for 53BP2 and find that, despite its low level of sequence conservation, these modeling studies and our mutation data are consistent with Swi6 having a structure very similar to that of 53BP2. Moreover, all but one of our single mutants and all of the site-directed mutants disrupt critical structural features of the predicted folding pattern of these repeats. We conclude that the ankyrin repeats play a major structural role in Swi6. Ankyrin repeats are unlikely to have inherent protein or DNA binding properties. However, they form a characteristic and stable structure with surfaces that may be tailored for many different macromolecular interactions.


Assuntos
Repetição de Anquirina/genética , Proteínas Fúngicas/genética , Mutação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Alanina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/química , Proteínas de Ligação a DNA , Proteínas Fúngicas/química , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos , Reação em Cadeia da Polimerase , Conformação Proteica , Temperatura , Fatores de Transcrição/química , Transcrição Gênica
4.
Genes Dev ; 11(22): 3032-45, 1997 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-9367985

RESUMO

Budding yeast possesses a checkpoint-dependent mechanism of delaying G1 progression in response to UV and ionizing radiation DNA damage. We have shown that after a pulse of DNA damage in G1 with the alkylating agent MMS, there is also a MEC1-, RAD53-, and RAD9-dependent delay in G1. This delay occurs at or before Start, as the MMS-treated cells do not bud, remain sensitive to alpha-factor, and have low CLN1 and CLN2 transcript levels for a longer time than untreated cells. We further show that MMS directly and reversibly down-regulates CLN1 and CLN2 transcript levels. The initial drop in CLN transcript levels in MMS is not RAD53 dependent, but the kinetics of reaccumulation of CLN messages as cells recover from the damage is faster in rad53-11 cells than in wild type cells. This is not an indirect effect of faster progression through G1, because CLN transcripts reaccumulate faster in rad53-11 mutants arrested in G1 as well. In addition, the recovery of CLN mRNA levels can be also hastened by a SWI6 deletion or by overexpression of the truncated Swi4 (Swi4-t) that lacks the carboxy-terminal domain through which Swi4 associates with Swi6. This indicates that both Rad53 and Swi6 are negative regulators of CLN expression after DNA damage. Finally, Swi6 undergoes an MMS-inducible, RAD53-dependent phosphorylation in G1 cells, and Rad53, immunoprecipitated from MMS-treated cells, phosphorylates Swi6 in vitro. On the basis of these observations, we suggest that the Rad53-dependent phosphorylation of Swi6 may delay the transition to S phase by inhibiting CLN transcription.


Assuntos
Proteínas de Ciclo Celular , Ciclinas/fisiologia , Dano ao DNA , Proteínas Fúngicas/fisiologia , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/fisiologia , Alquilantes , Ciclo Celular/efeitos dos fármacos , Quinase do Ponto de Checagem 2 , DNA Fúngico/genética , Regulação para Baixo , Regulação Fúngica da Expressão Gênica , Metanossulfonato de Metila , Fosforilação , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica
5.
Mol Biol Cell ; 6(12): 1641-58, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8590795

RESUMO

The Swi6 transcription factor, required for G1/S-specific gene expression in Saccharomyces cerevisiae, is highly phosphorylated in vivo. Within the limits of resolution of the peptide analysis, the synchrony, and the time intervals tested, serine 160 appears to be the only site of phosphorylation in Swi6 that varies during the cell cycle. Serine 160 resides within a Cdc28 consensus phosphorylation site and its phosphorylation occurs at about the time of maximal transcription of Swi6- and Cdc28-dependent genes containing SCB or MCB elements. However, phosphorylation at this site is not Cdc28-dependent, nor does it control G1/S-specific transcription. The role of the cell cycle-regulated phosphorylation is to control the subcellular localization of Swi6. Phosphorylation of serine 160 persists from late G1 until late M phase, and Swi6 is predominantly cytoplasmic during this time. Aspartate substitution for serine 160 inhibits nuclear localization throughout the cycle. Swi6 enters the nucleus late in M phase and throughout G1, when serine 160 is hypophosphorylated. Alanine substitution at position 160 allows nuclear entry of Swi6 throughout the cell cycle. GFP fusions with the N-terminal one-third of Swi6 display the same cell cycle-regulated localization as Swi6.


Assuntos
Ciclo Celular/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/biossíntese , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/biossíntese , Genes Fúngicos , Genótipo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo , Fosforilação , Mutação Puntual , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/biossíntese , Transcrição Gênica
6.
Mol Cell Biol ; 13(2): 1069-77, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8423776

RESUMO

SWI4 and SWI6 play a crucial role in START-specific transcription in Saccharomyces cerevisiae. SWI4 and SWI6 form a specific complex on the SCB (SWI4/6-dependent cell cycle box) sequences which have been found in the promoters of HO and G1 cyclin genes. Overproduction of SWI4 eliminates the SWI6 dependency of HO transcription in vivo and results in a new SWI6-independent, SCB-specific complex in vitro, which is heterogeneous and reacts with SWI4 antibodies. The C terminus of SWI4 is not required for SWI6-independent binding of SWI4 to SCB sequences, but it is necessary and sufficient for association with SWI6. Both SWI4 and SWI6 contain two copies of a 33-amino-acid TPLH repeat, which has been implicated in protein-protein interactions in other proteins. These repeats are not required for the SWI4-SWI6 association. Alanine substitutions in both TPLH repeats of SWI6 reduce its activity but do not affect the stability of the protein or its association with SWI4. However, these mutations reduce the ability of the SWI4/6 complex to bind DNA. Deletion of the lucine zipper motif in SWI6 also allows SWI4/6 complex formation, but it eliminates the DNA-binding ability of the SWI4/6 complex. This indicates that the integrity of two different regions of SWI6 is required for DNA binding by the SWI4/6 complex. From these data, we propose that the sequence-specific DNA-binding domain resides in SWI4 but that SWI6 controls the accessibility of this domain in the SWI4/6 complex.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Ligação a DNA , Fase G1/genética , Zíper de Leucina , Dados de Sequência Molecular , Testes de Precipitina , Sequências Repetitivas de Ácido Nucleico , Fase S/genética , Saccharomyces cerevisiae/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA