RESUMO
Background and Objectives: Central Nervous System (CNS) pediatric tumors represent the most common solid tumors in children with a wide variability in terms of survival and therapeutic response. By contrast to their adult counterpart, the mutational landscape of pediatric CNS tumors is characterized by oncogenic fusions rather than multiple mutated genes. CNS pediatric tumors associated with oncogenic fusions represent a complex landscape of tumors with wide radiological, morphological and clinical heterogeneity. In the fifth CNS WHO classification, there are few pediatric CNS tumors for which diagnosis is based on a single oncogenic fusion. This work aims to provide an overview of the impact of rare oncogenic fusions (NTRK, ROS, ALK, MET, FGFR, RAF, MN1, BCOR and CIC genes) on pathogenesis, histological phenotype, diagnostics and theranostics in pediatric CNS tumors. We report four cases of pediatric CNS tumors associated with NTRK (n = 2), ROS (n = 1) and FGFR3 (n = 1) oncogenic fusion genes as a proof of concept. Cases presentation and literature review: The literature review and the cohort that we described here underline that most of these rare oncogenic fusions are not specific to a single morpho-molecular entity. Even within tumors harboring the same oncogenic fusions, a wide range of morphological, molecular and epigenetic entities can be observed. Conclusions: These findings highlight the need for caution when applying the fifth CNS WHO classification, as the vast majority of these fusions are not yet incorporated in the diagnosis, including grade evaluation and DNA methylation classification.
RESUMO
Diagnosis of Frontotemporal dementia (FTD) and the specific underlying neuropathologies (frontotemporal lobar degeneration; FTLD- Tau and FTLD-TDP) is challenging, and thus fluid biomarkers are needed to improve diagnostic accuracy. We used proximity extension assays to analyze 665 proteins in cerebrospinal fluid (CSF) samples from a multicenter cohort including patients with FTD (n = 189), Alzheimer's Disease dementia (AD; n = 232), and cognitively unimpaired individuals (n = 196). In a subset, FTLD neuropathology was determined based on phenotype or genotype (FTLD-Tau = 87 and FTLD-TDP = 68). Forty three proteins were differentially regulated in FTD compared to controls and AD, reflecting axon development, regulation of synapse assembly, and cell-cell adhesion mediator activity pathways. Classification analysis identified a 14- and 13-CSF protein panel that discriminated FTD from controls (AUC: 0.96) or AD (AUC: 0.91). Custom multiplex panels confirmed the highly accurate discrimination between FTD and controls (AUCs > 0.96) or AD (AUCs > 0.88) in three validation cohorts, including one with autopsy confirmation (AUCs > 0.90). Six proteins were differentially regulated between FTLD-TDP and FTLD-Tau, but no reproducible classification model could be generated (AUC: 0.80). Overall, this study introduces novel FTD-specific biomarker panels with potential use in diagnostic setting.
RESUMO
OBJECTIVES: This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions. METHODS: The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject. RESULTS: MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers. CONCLUSIONS: Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.
Assuntos
Envelhecimento , Doença de Alzheimer , Encéfalo , Disfunção Cognitiva , Envelhecimento Saudável , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Pessoa de Meia-Idade , Biomarcadores , Idoso de 80 Anos ou mais , Estudos RetrospectivosRESUMO
Inherited prion diseases caused by two- to twelve-octapeptide repeat insertions (OPRIs) in the prion protein gene (PRNP) show significant clinical heterogeneity. This study describes a family with two new cases with a 4-OPRI mutation and two asymptomatic mutation carriers. The pooled analysis summarizes all cases reported in the literature to date and describes the relation between survival, age of onset, number of OPRI and codon 129 polymorphism. MEDLINE and Google Scholar were queried from database inception up to December 31, 2022. Age of onset was compared per number of OPRI and per codon 129 polymorphism using the Kruskal-Wallis and Wilcoxon-Mann-Whitney tests, respectively. Disease duration was modeled non-parametrically by a Kaplan-Meier model and semi-parametrically by a Cox model. This study comprised 164 patients. Lower number of OPRI and presence of valine (cis-V) versus methionine (cis-M) on codon 129 were associated with an older age of onset (P < 0.001 and P = 0.025, respectively) and shorter disease duration (P < 0.001 and P = 0.003, respectively). Within patients with 5- or more OPRI codon cis-V remained significantly associated with a shorter disease duration. Codon 129 homozygosity versus heterozygosity was not significantly associated with age of onset or disease duration (P = 0.076 and P = 0.409, respectively). This study summarized the largest cohort of patients with two- to twelve-OPRI to date. Lower number of OPRI and codon 129 cis-V is associated with an older age of onset and shorter disease duration, while homozygosity or heterozygosity on codon 129 was not.
Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/genética , Príons/metabolismo , Proteínas Priônicas/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Mutação , Códon/genéticaAssuntos
Angiopatia Amiloide Cerebral , Vasculite , Humanos , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Vasculite/diagnóstico , Vasculite/etiologia , Células Gigantes , Peptídeos beta-Amiloides , Imageamento por Ressonância Magnética , Hemorragia CerebralRESUMO
Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n = 109), Alzheimer´s disease (AD, n = 235) and cognitively unimpaired controls (n = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities.
Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/diagnóstico , Doença por Corpos de Lewy/diagnóstico , Proteoma , Autopsia , BiomarcadoresRESUMO
The development of Alzheimer's disease (AD) involves central and peripheral immune deregulation. Gene identification and studies of AD genetic variants of peripheral immune components may aid understanding of peripheral-central immune crosstalk and facilitate new opportunities for therapeutic intervention. In this study, we have identified in a Flanders-Belgian family a novel variant p.E317D in the Toll-like receptor 9 gene (TLR9), co-segregating with EOAD in an autosomal dominant manner. In human, TLR9 is an essential innate and adaptive immune component predominantly expressed in peripheral immune cells. The p.E317D variant caused 50% reduction in TLR9 activation in the NF-κB luciferase assay suggesting that p.E317D is a loss-of-function mutation. Cytokine profiling of human PBMCs upon TLR9 activation revealed a predominantly anti-inflammatory response in contrast to the inflammatory responses from TLR7/8 activation. The cytokines released upon TLR9 activation suppressed inflammation and promoted phagocytosis of Aß42 oligomers in human iPSC-derived microglia. Transcriptome analysis identified upregulation of AXL, RUBICON and associated signaling pathways, which may underline the effects of TLR9 signaling-induced cytokines in regulating the inflammatory status and phagocytic property of microglia. Our data suggest a protective role of TLR9 signaling in AD pathogenesis, and we propose that TLR9 loss-of-function may disrupt a peripheral-central immune crosstalk that promotes dampening of inflammation and clearance of toxic protein species, leading to the build-up of neuroinflammation and pathogenic protein aggregates in AD development.
RESUMO
Heterozygous loss-of-function (LOF) mutations in the progranulin gene (GRN) cause frontotemporal lobar degeneration (FTLD) by a mechanism of haploinsufficiency. For most missense mutations, the contribution to FTLD is however unclear. We studied the pathogenicity of rare GRN missense mutations using patient biomaterials. We identified a new mutation in GRN, c.1178 A>C, in a patient with a diagnosis of primary progressive aphasia. Neuropathological examination of autopsied brain showed FTLD with TAR DNA-binding protein 43 (FTLD-TDP) type A pathology with concomitant Alzheimer's disease pathology. Serum progranulin protein levels were reduced to levels comparable to known LOF mutations. The mutation is in the last codon of exon 10, in the splice donor sequence. Our data provide evidence that the mutation leads to aberrant splicing, resulting in a frameshift (p.(Glu393AlafsTer31)) and consequently nonsense-mediated mRNA decay. Our finding demonstrates that carefully examining sequencing data around splice sites is needed since this mutation was annotated as a missense mutation. Unraveling the pathogenicity of variants of unknown significance is important for clinical diagnosis and genetic counseling.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/genética , Progranulinas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Degeneração Lobar Frontotemporal/patologia , Mutação/genética , Éxons/genéticaRESUMO
The missense mutation p.R406W in microtubule-associated protein tau leads to frontotemporal lobar degeneration with an amnestic, Alzheimer's disease-like phenotype with an autosomal dominant pattern of inheritance. In 2003, we described the pedigree of a Belgian family, labelled ADG, with 28 p.R406W patients. Over 18 years follow-up, we extended the family with 10 p.R406W carriers and provided an in-depth clinical description of the patients. Additionally, genetic screening was used to identify p.R406W carriers in Belgian cohorts of frontotemporal dementia and Alzheimer's disease patients and to calculate p.R406W frequency. In the frontotemporal dementia cohort, we found four p.R406W carriers (n = 647, 0.62%) and three in the Alzheimer's disease cohort (n = 1134, 0.26%). Haplotype sharing analysis showed evidence of a shared haplotype suggesting that they are descendants of a common ancestor. Of the p.R406W patients, we describe characteristics of neuropsychological, imaging and fluid biomarkers as well as neuropathologic examination. Intriguingly, the phenotypic spectrum among the p.R406W patients ranged from typical behavioural variant frontotemporal dementia to clinical Alzheimer's disease, based on CSF biomarker analysis and amyloid PET scan. Heterogeneous overlap syndromes existed in between, with highly common neuropsychiatric symptoms like disinhibition and aggressiveness, which occurred in 100% of frontotemporal dementia and 58% of clinical Alzheimer's disease patients. This was also the case for memory problems, 89% in frontotemporal dementia and 100% in clinical Alzheimer's disease patients. Median age at death was significantly lower in patients with frontotemporal dementia (68 years) compared to clinical Alzheimer's disease patients (79 years), although the sizes of the sub-cohorts are limited and do not allow prognostic predictions. Post-mortem brain analysis of one p.R406W patient with behavioural variant frontotemporal dementia revealed frontotemporal lobar degeneration with tau pathology. Notably, neuropathological investigation showed only 3R tau isoforms in the absence of 4R tau reactivity, an unusual finding in microtubule-associated protein tau-related frontotemporal lobar degeneration. No traces of amyloid pathology were present. Prevalence of the p.R406W mutation was relatively high in both frontotemporal dementia and Alzheimer's disease Belgian patient cohorts. These findings grant new insights into genotype-phenotype correlations of p.R406W carriers. They may help in further unravelling of the pathophysiology of this tauopathy and in facilitating the identification of patients with p.R406W-related frontotemporal lobar degeneration, both in clinical diagnostic and research settings.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença de Pick , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas tau/genética , Degeneração Lobar Frontotemporal/patologia , Mutação/genética , Fenótipo , BiomarcadoresRESUMO
The biological definition of Alzheimer's disease using CSF biomarkers requires abnormal levels of both amyloid (A) and tau (T). However, biomarkers and corresponding cutoffs may not always reflect the presence or absence of pathology. Previous studies suggest that up to 32% of individuals with autopsy-confirmed Alzheimer's disease show normal CSF p-tau levels in vivo, but these studies are sparse and had small sample sizes. Therefore, in three independent autopsy cohorts, we studied whether or not CSF A+T- excluded Alzheimer's disease based on autopsy. We included 215 individuals, for whom ante-mortem CSF collection and autopsy had been performed, from three cohorts: (i) the Amsterdam Dementia Cohort (ADC) [n = 80, 37 (46%) Alzheimer's disease at autopsy, time between CSF collection and death 4.5 ± 2.9 years]; (ii) the Antwerp Dementia Cohort (DEM) [n = 92, 84 (91%) Alzheimer's disease at autopsy, time CSF collection to death 1.7 ± 2.3 years]; and (iii) the Alzheimer's Disease Neuroimaging Initiative (ADNI) [n = 43, 31 (72%) Alzheimer's disease at autopsy, time CSF collection to death 5.1 ± 2.5 years]. Biomarker profiles were based on dichotomized CSF Aß1-42 and p-tau levels. The accuracy of CSF AT profiles to detect autopsy-confirmed Alzheimer's disease was assessed. Lastly, we investigated whether the concordance of AT profiles with autopsy diagnosis improved when CSF was collected closer to death in 9 (10%) DEM and 30 (70%) ADNI individuals with repeated CSF measurements available. In total, 50-73% of A+T- individuals and 100% of A+T+ individuals had Alzheimer's disease at autopsy. Amyloid status showed the highest accuracy to detect autopsy-confirmed Alzheimer's disease (accuracy, sensitivity and specificity in the ADC: 88%, 92% and 84%; in the DEM: 87%, 94% and 12%; and in the ADNI cohort: 86%, 90% and 75%, respectively). The addition of CSF p-tau did not further improve these estimates. We observed no differences in demographics or degree of Alzheimer's disease neuropathology between A+T- and A+T+ individuals with autopsy-confirmed Alzheimer's disease. All individuals with repeated CSF measurements remained stable in Aß1-42 status during follow-up. None of the Alzheimer's disease individuals with a normal p-tau status changed to abnormal; however, four (44%) DEM individuals and two (7%) ADNI individuals changed from abnormal to normal p-tau status over time, and all had Alzheimer's disease at autopsy. In summary, we found that up to 73% of A+T- individuals had Alzheimer's disease at autopsy. This should be taken into account in both research and clinical settings.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Proteínas tau , Biomarcadores , Sensibilidade e Especificidade , Fragmentos de PeptídeosRESUMO
BACKGROUND: Distinguishing between Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) results in poor diagnostic accuracy. OBJECTIVE: To investigate the utility of electroencephalography (EEG)-based biomarkers in comparison and in addition to established cerebrospinal fluid (CSF) biomarkers in the AD versus FTLD differential diagnosis. METHODS: The study cohort comprised 37 AD and 30 FTLD patients, of which 17 AD and 9 FTLD patients had definite diagnoses. All participants had CSF neurochemical (NCM) biomarker analyses (Aß1-42, T-tau, P-tau181, and Nf-L) and underwent 19-channel resting-state EEG. From the EEG spectra, dominant frequency peaks were extracted in four regions resulting in four dominant frequencies. This produced eight features (4 NCM + 4 EEG). RESULTS: When NCM and EEG markers were combined, the diagnostic accuracy increased significantly. In the whole group, the accuracy went up from 79% (NCM) to almost 82%, while in the definite group only, it went up from around 85% to almost 95%. Two differences in the occurrence of the dominant EEG frequency were discovered: people lacking a clear dominant peak almost all had definite AD, while people with two peaks more often had FTLD. CONCLUSION: Combining EEG with NCM biomarkers resulted in differential diagnostic accuracies of 82% in clinically diagnosed AD and FTD patients and of 95% in patients having a definite diagnosis, which was significantly better than with EEG or NCM biomarkers alone. This suggests that NCM and EEG markers are complementary, revealing different aspects of the disease and therefore confirms again their relevance in developing additional diagnosis tools.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Projetos Piloto , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Diagnóstico Diferencial , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/diagnóstico , Biomarcadores/líquido cefalorraquidianoRESUMO
Nitric oxide (NO) is a small gaseous signaling molecule responsible for maintaining homeostasis in a myriad of tissues and molecular pathways in neurology and the cardiovasculature. In recent years, there has been increasing interest in the potential interaction between arterial stiffness (AS), an independent cardiovascular risk factor, and neurodegenerative syndromes given increasingly epidemiological study reports. For this reason, we previously investigated the mechanistic convergence between AS and neurodegeneration via the progressive non-selective inhibition of all nitric oxide synthase (NOS) isoforms with N(G)-nitro-L-arginine methyl ester (L-NAME) in C57BL/6 mice. Our previous results showed progressively increased AS in vivo and impaired visuospatial learning and memory in L-NAME-treated C57BL/6 mice. In the current study, we sought to further investigate the progressive molecular signatures in hippocampal tissue via LC-MS/MS proteomic analysis. Our data implicate mitochondrial dysfunction due to progressive L-NAME treatment. Two weeks of L-NAME treatment implicates altered G-protein-coupled-receptor signaling in the nerve synapse and associated presence of seizures and altered emotional behavior. Furthermore, molecular signatures implicate the cerebral presence of seizure-related hyperexcitability after short-term (8 weeks) treatment followed by ribosomal dysfunction and tauopathy after long-term (16 weeks) treatment.
RESUMO
Aims: This preliminary study aimed to investigate therapy-induced electrophysiological changes in persons with primary progressive aphasia (PPA). The investigated event-related potential (ERP) components associated with language processing were the mismatch negativity, P300, N400, and P600. Methods: A linguistic ERP test battery and standardized language assessment were administered in four patients with PPA of which two received speech-language therapy (SLT) and two did not receive therapy. The battery was administered twice with approximately 6 months in between in each patient. The results of the follow-up assessments were compared to the results of the initial assessments. Results: Although the results of the behavioral language assessment remained relatively stable between the initial and follow-up assessments, changes in the mean amplitudes, onset latencies, and duration of the ERP components were found in the four patients. In the two patients that did not receive SLT, an increased delay in 50% and a decreased mean amplitude in 25% of the measured ERP components were found. The electrophysiological changes found in the patients that received SLT were variable. Interestingly, the mismatch negativity and the N400 effect elicited by the categorical priming paradigm were less delayed and had an increased mean amplitude at the follow-up assessment in the patient with the non-fluent variant who received SLT. In this patient, the P600 component was absent at the initial assessment but present at the follow-up assessment. Conclusion: Although no clear patterns in electrophysiological changes between patients who received SLT and patients who did not receive SLT were found by our preliminary study, it seems like the SLT induced improvements or compensation mechanisms in some specific language comprehension processes in the patient with the NFV. The results of this study are still preliminary because only four heterogeneous patients were included. Future studies should include larger patient groups of the three clinical variants because the therapy-induced electrophysiological changes might differ depending on the clinical variant and the underlying pathology.
RESUMO
BACKGROUND: Aicardi-Goutières syndrome (AGS) is a type I interferonopathy usually characterized by early-onset neurologic regression. Biallelic mutations in LSM11 and RNU7-1, components of the U7 small nuclear ribonucleoprotein (snRNP) complex, have been identified in a limited number of genetically unexplained AGS cases. Impairment of U7 snRNP function results in misprocessing of replication-dependent histone (RDH) pre-mRNA and disturbance of histone occupancy of nuclear DNA, ultimately driving cGAS-dependent type I interferon (IFN-I) release. OBJECTIVE: We performed a clinical, genetic, and immunological workup of 3 unrelated patients with uncharacterized AGS. METHODS: Whole exome sequencing (WES) and targeted Sanger sequencing of RNU7-1 were performed. Primary fibroblasts were used for mechanistic studies. IFN-I signature and STAT1/2 phosphorylation were assessed in peripheral blood. Cytokines were profiled on serum and cerebrospinal fluid (CSF). Histopathology was examined on brain and kidney tissue. RESULTS: Sequencing revealed compound heterozygous RNU7-1 mutations, resulting in impaired RDH pre-mRNA processing. The 3' stem-loop mutations reduced stability of the secondary U7 snRNA structure. A discrete IFN-I signature in peripheral blood was paralleled by MCP-1 (CCL2) and CXCL10 upregulation in CSF. Histopathological analysis of the kidney showed thrombotic microangiopathy. We observed dysregulated STAT phosphorylation upon cytokine stimulation. Clinical overview of all reported patients with RNU7-1-related disease revealed high mortality and high incidence of organ involvement compared to other AGS genotypes. CONCLUSIONS: Targeted RNU7-1 sequencing is recommended in genetically unexplained AGS cases. CSF cytokine profiling represents an additional diagnostic tool to identify aberrant IFN-I signaling. Clinical follow-up of RNU7-1-mutated patients should include screening for severe end-organ involvement including liver disease and nephropathy.
Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , RNA Nuclear Pequeno/genética , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Quimiocina CXCL10/genética , Histonas , Humanos , Interferons , Mutação , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
Alzheimer's disease CSF biomarkers 42 amino acid long amyloid-ß peptide (Aß1-42), total tau protein (T-tau), and tau protein phosphorylated at threonine 181 (P-tau181) are considered surrogate biomarkers of Alzheimer's disease pathology, and significantly improve diagnostic accuracy. Their ability to reflect neuropathological changes later in the disease course is not well characterized. This study aimed to assess the potential of CSF biomarkers measured in mid to late stage Alzheimer's disease to reflect post-mortem neuropathological changes. Individuals were selected from two autopsy cohorts of Alzheimer's disease patients in Antwerp and Amsterdam. Neuropathological diagnosis was performed according to the updated consensus National Institute on Aging-Alzheimer's Association guidelines, which includes quantification of amyloid-ß plaque, neurofibrillary tangle, and neuritic plaque load. CSF samples were analysed for Aß1-42, T-tau, and P-tau181 by ELISA. One hundred and fourteen cases of pure definite Alzheimer's disease were included in the study (mean age 74 years, disease duration 6 years at CSF sampling, 50% females). Median interval between CSF sampling and death was 1 year. We found no association between Aß1-42 and Alzheimer's disease neuropathological change profile. In contrast, an association of P-tau181 and T-tau with Alzheimer's disease neuropathological change profile was observed. P-tau181 was associated with all three individual Montine scores, and the associations became stronger and more significant as the interval between lumbar puncture and death increased. T-tau was also associated with all three Montine scores, but in individuals with longer intervals from lumbar puncture to death only. Stratification of the cohort according to APOE ε4 carrier status revealed that the associations applied mostly to APOE ε4 non-carriers. Our data suggest that similar to what has been reported for Aß1-42, plateau levels of P-tau181 and T-tau are reached during the disease course, albeit at later disease stages, reducing the potential of tau biomarkers to monitor Alzheimer's disease pathology as the disease progresses. As a consequence, CSF biomarkers, which are performant for clinical diagnosis of early Alzheimer's disease, may not be well suited for staging or monitoring Alzheimer's disease pathology as it progresses through later stages.
Assuntos
Doença de Alzheimer , Proteínas tau , Feminino , Humanos , Idoso , Masculino , Proteínas tau/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Apolipoproteína E4 , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Placa Amiloide , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Treonina , Fragmentos de Peptídeos/líquido cefalorraquidianoRESUMO
We aimed to evaluate the specificity of neurogranin (Ng) for Alzheimer's disease (AD) in a dementia cohort. Cerebrospinal fluid (CSF) Ng was measured (ELISA) in two independent cohorts: (1) clinical (n = 116; age 72±11 years): AD, non-AD (+high T-tau), and controls; and (2) autopsy-confirmed (n = 97; age 71±11 years): AD and non-AD, and 50 controls (age 60±6 years). In 16 autopsy-confirmed AD and 8 control subjects, Ng was measured in tissue (BA6+BA22). Ng was compared across diagnostic groups or neuropathological staging using multilinear regression models. Median[IQR] Ng concentrations were elevated in AD (414[315-499]pg/mL) and non-AD (464[319-699]pg/mL) compared to controls (260[193-306]pg/mL), but highest in AD-high-T-tau (874[716, 1148] pg/mL) and Creutzfeldt-Jakob disease (CJD; 828[703-1373]pg/mL) in cohort 1 (p < 0.01), but not in cohort 2: AD: 358[249-470]pg/mL; non-AD:245[137-416]pg/mL; controls: 259[193-370]pg/mL. Ng and tau biomarkers strongly correlated (r = 0.4-0.9, p < 0.05), except in CJD. CSF Ng concentrations were not associated with neuropathological AD hallmarks, nor with tissue Ng concentrations. CSF Ng is a general biomarker for synaptic degeneration, strongly correlating with CSF tau, but without added value for AD differential diagnosis.
Assuntos
Doença de Alzheimer/diagnóstico , Doenças Neurodegenerativas/diagnóstico , Neurogranina/líquido cefalorraquidiano , Sinapses , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultados NegativosRESUMO
BACKGROUND: Magnetic resonance imaging (MRI) has become important in the diagnostic work-up of neurodegenerative diseases. icobrain dm, a CE-labeled and FDA-cleared automated brain volumetry software, has shown potential in differentiating cognitively healthy controls (HC) from Alzheimer's disease (AD) dementia (ADD) patients in selected research cohorts. OBJECTIVE: This study examines the diagnostic value of icobrain dm for AD in routine clinical practice, including a comparison to the widely used FreeSurfer software, and investigates if combined brain volumes contribute to establish an AD diagnosis. METHODS: The study population included HC (nâ=â90), subjective cognitive decline (SCD, nâ=â93), mild cognitive impairment (MCI, nâ=â357), and ADD (nâ=â280) patients. Through automated volumetric analyses of global, cortical, and subcortical brain structures on clinical brain MRI T1w (nâ=â820) images from a retrospective, multi-center study (REMEMBER), icobrain dm's (v.4.4.0) ability to differentiate disease stages via ROC analysis was compared to FreeSurfer (v.6.0). Stepwise backward regression models were constructed to investigate if combined brain volumes can differentiate between AD stages. RESULTS: icobrain dm outperformed FreeSurfer in processing time (15-30âmin versus 9-32âh), robustness (0 versus 67 failures), and diagnostic performance for whole brain, hippocampal volumes, and lateral ventricles between HC and ADD patients. Stepwise backward regression showed improved diagnostic accuracy for pairwise group differentiations, with highest performance obtained for distinguishing HC from ADD (AUCâ=â0.914; Specificity 83.0%; Sensitivity 86.3%). CONCLUSION: Automated volumetry has a diagnostic value for ADD diagnosis in routine clinical practice. Our findings indicate that combined brain volumes improve diagnostic accuracy, using real-world imaging data from a clinical setting.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento por Ressonância Magnética , Software , Idoso , Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Estudos RetrospectivosRESUMO
BACKGROUND: The semantic variant of primary progressive aphasia (PPA) is typically associated with a loss of semantic knowledge. Research on the semantic processing in the other clinical variants of PPA is, however, rather sparse and limited to off-line behavioural studies. AIMS: This study aimed to investigate verbal semantic processing in patients with the three variants of PPA by the event-related potential technique. The presence, latency, amplitude and/or topographic distribution of the N400 effect may be helpful in the diagnosis of PPA and its clinical variants and it provides temporal information about semantic processing (disturbances) in the three variants of PPA. METHODS & PROCEDURES: The N400 effect was studied by a categorical word-priming paradigm and a semantic-anomaly paradigm at sentence level in eight persons with PPA(-plus) and 30 age-matched healthy controls. The mean amplitudes and onset latencies of the N400 effect were compared between each patient and the control group by two methods that are applicable in clinical practice, namely visual inspection and Z-scores. OUTCOMES & RESULTS: The N400 effect elicited by the categorical-priming paradigm was only present in the two patients with the non-fluent variant of PPA. This effect was absent in the two patients with the semantic variant(-plus), two patients with the logopenic variant(-plus), one patient with the non-fluent variant-plus, and the patient with PPA not otherwise specified. The results of the N400 effect elicited by the semantic-anomaly task at the sentence level were variable, but differences in the presence, mean amplitudes, onset latencies and/or topographic distributions of the effect were found in all patients with PPA(-plus) in comparison with the control group. CONCLUSIONS & IMPLICATIONS: The results of our study showed that the evaluation of the N400 effect might have an added value in the diagnostic process of PPA in general and in the differentiation of patients with the non-fluent variant from patients with the logopenic and semantic variants. Furthermore, our results indicate the presence of difficulties with retrieving stored semantic knowledge or semantic integration of a word in the preceding context in patients with the three variants of PPA. These findings might help the speech-language pathologist in determining individualized therapy goals and indicate that it might be helpful to focus on verbal semantic processing in language therapy in patients with the three variants of PPA and not only in patients with the semantic variant. WHAT THIS PAPER ADDS: What is already known on the subject The semantic variant of PPA is characterized by an impaired object knowledge and single-word comprehension and these functions are relatively spared in the non-fluent and logopenic variants following the guidelines of Gorno-Tempini et al. (2011). Research on the semantic processing in patients with the non-fluent and logopenic variant is, however, rather sparse and limited to off-line behavioural studies. Only four group studies investigated verbal semantic processing by the N400 effect, and these studies indicate disturbances in the three variants of PPA. What this paper adds to existing knowledge Our results indicate the presence of difficulties with retrieving stored semantic knowledge or semantic integration of a word in the preceding context during a semantic-priming paradigm in patients with the semantic and logopenic variants of PPA and during a semantic-anomaly task at the sentence level in patients with the three variants of PPA. What are the potential or actual clinical implications of this work? The results of our study showed that the evaluation of the N400 effect might have an added value in the diagnostic process of PPA in general and in the differentiation of patients with the non-fluent variant from patients with the logopenic and semantic variants. The evaluation of the N400 effect might also help the speech-language pathologist in determining individualized therapy goals and indicate that it might be helpful to focus on verbal semantic processing in language therapy in patients with the three variants of PPA and not only in patients with the semantic variant.
Assuntos
Afasia Primária Progressiva , Semântica , Afasia Primária Progressiva/diagnóstico , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Idioma , MasculinoRESUMO
Aims: This study aimed to investigate phoneme perception in patients with primary progressive aphasia (PPA) by using the event-related potential (ERP) technique. These ERP components might contribute to the diagnostic process of PPA and its clinical variants (NFV: nonfluent variant, SV: semantic variant, LV: logopenic variant) and reveal insights about phoneme perception processes in these patients. Method: Phoneme discrimination and categorization processes were investigated by the mismatch negativity (MMN) and P300 in eight persons with early- and late-stage PPA (3 NFV, 2 LV, 2 SV, and 1 PPA-NOS; not otherwise specified) and 30 age-matched healthy adults. The mean amplitude, the onset latency, and the topographic distribution of both components in each patient were compared to the results of the control group. Results: The MMN was absent or the onset latency of the MMN was delayed in the patients with the NFV, LV, and PPA-NOS in comparison to the control group. In contrast, no differences in mean amplitudes and onset latencies of the MMN were found between the patients with the SV and the control group. Concerning the P300, variable results were found in the patients with the NFV, SV, and PPA-NOS, but the P300 of both patients with the LV was delayed and prolonged with increased mean amplitude in comparison to the control group. Conclusion: In this preliminary study, phoneme discrimination deficits were found in the patients with the NFV and LV, and variable deficits in phoneme categorization processes were found in all patients with PPA. In clinical practice, the MMN might be valuable to differentiate the SV from the NFV and the LV and the P300 to differentiate the LV from the NFV and the SV. Further research in larger and independent patient groups is required to investigate the applicability of these components in the diagnostic process and to determine the nature of these speech perception deficits in the clinical variants of PPA.
RESUMO
Neurodegenerative disorders like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are pathologically characterized by toxic protein deposition in the cytoplasm or nucleus of affected neurons and glial cells. Many of these aggregated proteins belong to the class of RNA binding proteins (RBP), and, when mutated, account for a significant subset of familial ALS and FTD cases. Here, we present first genetic evidence for the RBP gene RBM45 in the FTD-ALS spectrum. RBM45 shows many parallels with other FTD-ALS associated genes and proteins. Multiple lines of evidence have demonstrated that RBM45 is an RBP that, upon mutation, redistributes to the cytoplasm where it co-aggregates with other RBPs into cytoplasmic stress granules (SG), evolving to persistent toxic TDP-43 immunoreactive inclusions. Exome sequencing in two affected first cousins of a heavily affected early-onset dementia family listed a number of candidate genes. The gene with the highest pathogenicity score was the RBP gene RBM45. In the family, the RBM45 Arg183* nonsense mutation co-segregated in both affected cousins. Validation in an unrelated patient (n = 548) / control (n = 734) cohort identified an additional RBM45 Arg183* carrier with bvFTD on a shared 4 Mb haplotype. Transcript and protein expression analysis demonstrated loss of nuclear RBM45, suggestive of a loss-of-function disease mechanism. Further, two more ultra-rare VUS, one in the nuclear localization signal (NLS, p.Lys456Arg) in an ALS patient and one in the intrinsically disordered homo-oligomer assembly (HOA) domain (p.Arg314Gln) in a patient with nfvPPA were detected. Our findings suggest that the pathomechanisms linking RBM45 with FTD and ALS may be related to its loss of nuclear function as a mediator of mRNA splicing, cytoplasmic retention or its inability to form homo-oligomers, leading to aggregate formation with trapping of other RBPs including TDP-43, which may accumulate into persisted TDP-43 inclusions.