Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 223(3): 1073-1105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30802971

RESUMO

By means of meta-analyses we determined how 70 traits related to plant anatomy, morphology, chemistry, physiology, growth and reproduction are affected by daily light integral (DLI; mol photons m-2  d-1 ). A large database including 500 experiments with 760 plant species enabled us to determine generalized dose-response curves. Many traits increase with DLI in a saturating fashion. Some showed a more than 10-fold increase over the DLI range of 1-50 mol m-2  d-1 , such as the number of seeds produced per plant and the actual rate of photosynthesis. Strong decreases with DLI (up to three-fold) were observed for leaf area ratio and leaf payback time. Plasticity differences among species groups were generally small compared with the overall responses to DLI. However, for a number of traits, including photosynthetic capacity and realized growth, we found woody and shade-tolerant species to have lower plasticity. We further conclude that the direction and degree of trait changes adheres with responses to plant density and to vertical light gradients within plant canopies. This synthesis provides a strong quantitative basis for understanding plant acclimation to light, from molecular to whole plant responses, but also identifies the variables that currently form weak spots in our knowledge, such as respiration and reproductive characteristics.


Assuntos
Luz , Plantas/efeitos da radiação , Característica Quantitativa Herdável , Adaptação Fisiológica , Relação Dose-Resposta à Radiação , Desenvolvimento Vegetal/efeitos da radiação , Plantas/genética
2.
PLoS One ; 11(6): e0158110, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27341495

RESUMO

Numerous experiments, mostly performed in particular environments, have shown positive diversity-productivity relationships. Although the complementary use of resources is discussed as an important mechanism explaining diversity effects, less is known about how resource availability controls the strength of diversity effects and how this response depends on the functional composition of plant communities. We studied aboveground biomass production in experimental monocultures, two- and four-species mixtures assembled from two independent pools of four perennial grassland species, each representing two functional groups (grasses, forbs) and two growth statures (small, tall), and exposed to different combinations of light and nutrient availability. On average, shade led to a decrease in aboveground biomass production of 24% while fertilization increased biomass production by 36%. Mixtures were on average more productive than expected from their monocultures (relative yield total, RYT>1) and showed positive net diversity effects (NE: +34% biomass increase; mixture minus mean monoculture biomass). Both trait-independent complementarity effects (TICE: +21%) and dominance effects (DE: +12%) positively contributed to net diversity effects, while trait-dependent complementarity effects were minor (TDCE: +1%). Shading did not alter diversity effects and overyielding. Fertilization decreased RYT and the proportion of biomass gain through TICE and TDCE, while DE increased. Diversity effects did not increase with species richness and were independent of functional group or growth stature composition. Trait-based analyses showed that the dominance of species with root and leaf traits related to resource conservation increased TICE. Traits indicating the tolerance of shade showed positive relationships with TDCE. Large DE were associated with the dominance of species with tall growth and low diversity in leaf nitrogen concentrations. Our field experiment shows that positive diversity effects are possible in grass-forb mixtures irrespective of differences in light availability, but that the chance for the complementary use of resources increases when nutrients are not available at excess.


Assuntos
Biodiversidade , Ecossistema , Poaceae , Algoritmos , Biomassa , Pradaria , Modelos Teóricos
3.
Artigo em Inglês | MEDLINE | ID: mdl-27114579

RESUMO

Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources-soil nutrients or water-to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity-ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.


Assuntos
Biodiversidade , Secas , Eutrofização , Pradaria , Fenômenos Fisiológicos Vegetais , Europa (Continente) , América do Norte
4.
AoB Plants ; 72015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25818071

RESUMO

Functional traits are often used as species-specific mean trait values in comparative plant ecology or trait-based predictions of ecosystem processes, assuming that interspecific differences are greater than intraspecific trait variation and that trait-based ranking of species is consistent across environments. Although this assumption is increasingly challenged, there is a lack of knowledge regarding to what degree the extent of intraspecific trait variation in response to varying environmental conditions depends on the considered traits and the characteristics of the studied species to evaluate the consequences for trait-based species ranking. We studied functional traits of eight perennial grassland species classified into different functional groups (forbs vs. grasses) and varying in their inherent growth stature (tall vs. small) in a common garden experiment with different environments crossing three levels of nutrient availability and three levels of light availability over 4 months of treatment applications. Grasses and forbs differed in almost all above- and belowground traits, while trait differences related to growth stature were generally small. The traits showing the strongest responses to resource availability were similarly for grasses and forbs those associated with allocation and resource uptake. The strength of trait variation in response to varying resource availability differed among functional groups (grasses > forbs) and species of varying growth stature (small-statured > tall-statured species) in many aboveground traits, but only to a lower extent in belowground traits. These differential responses altered trait-based species ranking in many aboveground traits, such as specific leaf area, tissue nitrogen and carbon concentrations and above-belowground allocation (leaf area ratio and root : shoot ratio) at varying resource supply, while trait-based species ranking was more consistent in belowground traits. Our study shows that species grouping according to functional traits is valid, but trait-based species ranking depends on environmental conditions, thus limiting the applicability of species-specific mean trait values in ecological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA