RESUMO
Cathodoluminescence and electron backscatter diffraction have been applied to exactly the same grain boundaries (GBs) in a Cu(In,Ga)S2solar absorber in order to investigate the influence of microstructure on the radiative recombination behaviour at the GBs. Two different types of GB with different microstructure were analysed in detail: random high angle grain boundaries (RHAGBs) and Σ3 GBs. We found that the radiative recombination at all RHAGBs was inhibited to some extent, whereas at Σ3 GBs three different observations were made: unchanged, hindered, or promoted radiative recombination. These distinct behaviours may be linked to atomic-scale grain boundary structural differences. The majority of GBs also exhibited a small spectral shift of about ±10 meV relative to the local grain interior (GI) and a few of them showed spectral shifts of up to ±40 meV. Red and blue shifts were observed with roughly equal frequency.
RESUMO
Absolute photoluminescence measurements present a tool to predict the quality of photovoltaic absorber materials before finishing the solar cells. Quasi Fermi level splitting predicts the maximal open circuit voltage. However, various methods to extract quasi Fermi level splitting are plagued by systematic errors in the range of 10-20 meV. It is important to differentiate between the radiative loss and the shift of the emission maximum. They are not the same and when using the emission maximum as the "radiative" band gap to extract the quasi Fermi level splitting from the radiative efficiency, the quasi Fermi level splitting is 10 to 40 meV too low for a typical broadening of the emission spectrum. However, radiative efficiency presents an ideal tool to compare different materials without determining the quasi Fermi level splitting. For comparison with the open circuit voltage, a fit of the high energy slope to generalised Planck's law gives more reliable results if the fitted temperature, i.e. the slope of the high energy part, is close to the actual measurement temperature. Generalised Planck's law also allows the extraction of a non-absolute absorptance spectrum, which enables a comparison between the emission maximum energy and the absorption edge. We discuss the errors and the indications when they are negligible and when not.
RESUMO
Cu(In,Ga)S2 holds the potential to become a prime candidate for use as the top cell in tandem solar cells owing to its tunable bandgap from 1.55 eV (CuInS2) to 2.50 eV (CuGaS2) and favorable electronic properties. Devices above 14% power conversion efficiency (PCE) can be achieved by replacing the CdS buffer layer with a (Zn,Mg)O or Zn(O,S) buffer layer. However, the maximum achievable PCE of these devices is limited by the necessary high heating temperatures during or after buffer deposition, as this leads to a drop in the quasi-Fermi level splitting (qFLs) and therefore the maximum achievable open-circuit voltage (VOC). In this work, a low-temperature atomic layer deposited (Zn,Sn)O thin film is explored as a buffer layer to mitigate the drop in the qFLs. The devices made with (Zn,Sn)O buffer layers are characterized by calibrated photoluminescence and current-voltage measurements to analyze the optoelectronic and electrical characteristics. An improvement in the qFLs after buffer deposition is observed for devices prepared with the (Zn,Sn)O buffer deposited at 120 °C. Consequently, a device with a VOC value above 1 V was achieved. A 14% PCE is externally measured and certified for the best solar cell. The results show the necessity of developing a low-temperature buffer deposition process to maintain and translate absorber qFLs to device VOC.
RESUMO
Copper indium disulfide (CuInS2) grown under Cu-rich conditions exhibits high optical quality but suffers predominantly from charge carrier interface recombination, resulting in poor solar cell performance. An unfavorable "cliff"-like conduction band alignment at the buffer/CuInS2 interface could be a possible cause of enhanced interface recombination in the device. In this work, we exploit direct and inverse photoelectron spectroscopy together with electrical characterization to investigate the cause of interface recombination in chemical bath-deposited Zn(O,S)/co-evaporated CuInS2-based devices. Temperature-dependent current-voltage analyses indeed reveal an activation energy of the dominant charge carrier recombination path, considerably smaller than the absorber bulk band gap, confirming the dominant recombination channel to be present at the Zn(O,S)/CuInS2 interface. However, photoelectron spectroscopy measurements indicate a small (0.1 eV) "spike"-like conduction band offset at the Zn(O,S)/CuInS2 interface, excluding an unfavorable energy-level alignment to be the prominent cause for strong interface recombination. The observed band bending upon interface formation also suggests Fermi-level pinning not to be the main reason, leaving near-interface defects (as recently observed in Cu-rich CuInSe2) as the likely reason for the performance-limiting interface recombination.
RESUMO
The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe2 solar cells.
RESUMO
In the search for highly transparent and non-toxic alternative front layers replacing state-of-the-art CdS in Cu(In,Ga)Se2 thin-film solar cells, alternatives rarely exceed reference devices in terms of efficiency. Full-area ultra-thin aluminium oxide tunnelling layers do not require any contact patterning and thus overcome the main drawback of insulating passivation layers. Even a few monolayers of aluminium oxide can be deposited in a controlled manner by atomic layer deposition, they show excellent interface passivation properties, low absorption, and suitable current transport characteristics on test devices. Depositing a ZnO-based transparent front contact, however, results in extremely poor solar cell performance. The issue is not necessarily a low quality of the alternative front layer, but rather the intricate relation between front layer processing and electronic bulk properties in the absorber layer. We identify three challenges critical for the development of novel front passivation approaches: (i) both Cd and Zn impurities beneficially reduce the high native net dopant concentration in the space charge region, (ii) sputter deposition of ZnO damages the passivation layer resulting in increased interface recombination, (iii) thermal treatments of devices with ZnO layer result in substantial Zn diffusion, which can penetrate the full absorber thickness already at moderate temperatures.
RESUMO
The model for intrinsic defects in Cu(In,Ga)Se2 semiconductor layers is still under debate for the full range between CuInSe2 and CuGaSe2. It is commonly agreed by theory and experiment, that there are at least one shallow donor and two shallow acceptors. Spatially resolved photoluminescence on CuGaSe2 previously revealed a third acceptor. In this study we show with the same method that the photoluminescence peak at 0.94 eV in CuInSe2, previously attributed to a third acceptor, is a phonon replica. However another pronounced peak at 0.9 eV is detected on polycrystalline CuInSe2 samples grown with high copper and selenium excess. Intensity and temperature dependent photoluminescence measurements reveal that this peak originates from a DA-transition from a shallow donor (<8 meV) into a shallow acceptor A3 (135 [Formula: see text] 10) meV. The DA3 transition has three distinct phonon replicas with 28 meV spectral spacing and a Huang Rhys factor of 0.75. Complementary admittance measurements are dominated by one main step with an activation energy of 125 meV which corresponds well with the found A3 defect. The same defect is also observed in Cu(In,Ga)Se2 samples with low gallium content. For [Ga]/([Ga] + [In])-ratios of up to 0.15 both methods show a concordant increase of the activation energy with increasing gallium content shifting the defect deeper into the bandgap. The indium vacancy [Formula: see text] is discussed as a possible origin of the third acceptor level in CuInSe2 and [Formula: see text] in Cu(In,Ga)Se2.
RESUMO
Time-resolved photoluminescence (TRPL) is applied to determine an effective lifetime of minority charge carriers in semiconductors. Such effective lifetimes include recombination channels in the bulk as well as at the surfaces and interfaces of the device. In the case of Cu(In,Ga)Se2 absorbers used for solar cell applications, trapping of minority carriers has also been reported to impact the effective minority carrier lifetime. Trapping can be indicated by an increased temperature dependence of the experimentally determined photoluminescence decay time when compared to the temperature dependence of Shockley-Read-Hall (SRH) recombination alone and can lead to an overestimation of the minority carrier lifetime. Here, it is shown by technology computer-aided design (TCAD) simulations and by experiment that the intentional double-graded bandgap profile of high efficiency Cu(In,Ga)Se2 absorbers causes a temperature dependence of the PL decay time similar to trapping in case of a recombinative front surface. It is demonstrated that a passivated front surface results in a temperature dependence of the decay time that can be explained without minority carrier trapping and thus enables the assessment of the absorber quality by means of the minority carrier lifetime. Comparison with the absolute PL yield and the quasi-Fermi-level splitting (QFLS) corroborate the conclusion that the measured decay time corresponds to the bulk minority carrier lifetime of 250 ns for the double-graded CIGS absorber under investigation.
RESUMO
An accurate determination of the net dopant concentration in photovoltaic absorbers is critical for understanding and optimizing solar cell performance. The complex device structure of multilayered thin-film solar cells poses challenges to determine the dopant concentration. Capacitance-voltage ( C- V) measurements of Cu(In,Ga)Se2 thin-film solar cells typically yield depth-dependent apparent doping profiles and are not consistent with Hall measurements of bare absorbers. We show that deep defects cannot fully explain these discrepancies. We instead find that the space charge region capacitance follows the model of a linearly graded junction in devices containing a CdS or Zn(O,S) buffer layer, indicating that elemental intermixing at the absorber/buffer interface alters the dopant concentration within the absorber. For absorbers covered with MgF2, C- V measurements indeed agree well with Hall measurements. Photoluminescence measurements of Cu(In,Ga)Se2 absorbers before and after deposition of a CdS layer provide further evidence for a significant reduction of the near-surface net dopant concentration in the presence of CdS. We thus demonstrate that interdiffusion at the absorber/buffer interface is a critical factor to consider in the correct interpretation of doping profiles obtained from C- V analysis in any multilayered solar cell and that the true bulk dopant concentration in thin-film devices might be considerably different.
RESUMO
Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se2 and Cu(In,Ga)3Se5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.
RESUMO
We apply spectroscopic ellipsometry (SE) to identify secondary phases in Cu2ZnSnSe4 (CZTSe) absorbers and to investigate the optical properties of CZTSe. A detailed optical model is used to extract the optical parameters, such as refractive index and extinction coefficient in order to extrapolate the band gap values of CZTSe samples, and to obtain information about the presence of secondary phases at the front and back sides of the samples. We show that SE can be used as a non-destructive method for detection of the secondary phases ZnSe and MoSe2 and to extrapolate the band gap values of CZTSe phase.
RESUMO
We use polarization-resolved Raman spectroscopy to assess the crystal quality of epitaxial kesterite layers. It is demonstrated for the example of epitaxial Cu2ZnSnSe4 layers on GaAs(001) that "standing" and "lying" kesterite unit cell orientations (c'-axis parallel / perpendicular to the growth direction) can be distinguished by the application of Raman tensor analysis. From the appearance of characteristic intensity oscillations when the sample is rotated one can distinguish polycrystalline and epitaxial layers. The method can be transferred to kesterite layers oriented in any crystal direction and can shed light on the growth of such layers in general.
Assuntos
Simulação por Computador , Luz , Metais/química , Modelos Químicos , Análise Espectral Raman/métodos , Cristalização , Membranas ArtificiaisRESUMO
We investigate CZTSe films by polarization dependent Raman spectroscopy. The main peaks at 170 cm(-1), and 195 cm(-1) are found to have A symmetry. The Raman signal at 170 cm(-1) is found to be composed of two modes at 168 cm(-1) and 172 cm(-1). We attribute these three Raman peaks to the three A symmetry modes predicted for kesterite ordered Cu(2)ZnSnSe(4). The main Raman peak is asymmetrically broadened towards lower energies. Possible sources of the broadening are tested through temperature and depth dependent measurements. The broadening is attributed to phonon confinement effects related to the presence of lattice defects.
RESUMO
Copper-zinc-tin-chalcogenide kesterites, Cu(2)ZnSnS(4) and Cu(2)ZnSnSe(4) (CZTS(e)) are ideal candidates for the production of thin film solar cells on large scales due to the high natural abundance of all constituents, a tunable direct band gap ranging from 1.0 to 1.5 eV, a large absorption coefficient, and demonstrated power conversion efficiencies close to 10%. However, Sn losses through desorption of SnS(e) from CZTS(e) at elevated temperatures (above 400 °C) impede the thorough control of film composition and film homogeneity. No robust and feasible fabrication process is currently available. Here we show that understanding the formation reaction of the kesterite absorber is the key to control the growth process and to drastically improve the solar cell efficiency. Furthermore, we demonstrate that this knowledge can be used to simplify the four-dimensional parameter space (spanned by the four different elements) to an easy and robust two-dimensional process. Sufficiently high partial pressures of SnS(e) and S(e) (a) prevent the decomposition reaction of the CZTS(e) at elevated temperatures and (b) introduce any missing Sn into a Sn-deficient film. This finding enables us to simplify the precursor to a film containing only Cu and Zn, whereas Sn and S(e) are introduced from the gas phase by a self-regulating process.
RESUMO
The electrochemical deposition of Ga and Cu-Ga alloys from the deep eutectic solvent choline chloride/urea (Reline) is investigated to prepare CuGaSe(2) (CGS) semiconductors for their use in thin film solar cells. Ga electrodeposition is difficult from aqueous solution due to its low standard potential and the interfering hydrogen evolution reaction (HER). Ionic liquid electrolytes offer a better thermal stability and larger potential window and thus eliminate the interference of solvent breakdown reactions during Ga deposition. We demonstrate that metallic Ga can be electrodeposited from Reline without HER interference with high plating efficiency on Mo and Cu electrodes. A new low cost synthetic route for the preparation of CuGaSe(2) absorber thin films is presented and involves the one-step electrodeposition of Cu-Ga precursors from Reline followed by thermal annealing. Rotating disk electrode (RDE) cyclic voltammetry (CV) is used in combination with viscosity measurements to determine the diffusion coefficients of gallium and copper ions in Reline. The composition of the codeposited Cu-Ga precursor layers can be controlled to form Cu/Ga thin films with precise stoichiometry, which is important for achieving good optoelectronic properties of the final CuGaSe(2) absorbers. The morphology, the chemical composition and the crystal structure of the deposited thin films are analysed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). Annealing of the Cu-Ga films in a selenium atmosphere allowed the formation of high quality CuGaSe(2) absorber layers. Completed CGS solar cells achieved a 4.1% total area power conversion efficiency.
RESUMO
The electronic structure of grain boundaries in polycrystalline Cu(In,Ga)Se2 thin films and their role on solar cell device efficiency is currently under intense investigation. A neutral barrier of about 0.5 eV has been suggested as the reason for the benign behavior of grain boundaries in chalcopyrites. Previous experimental investigations have in fact shown a neutral barrier but only a few 10 meV high, which cannot be expected to have a significant influence on the solar cell efficiency. Here we show that a full investigation of the electrical behavior of charged and neutral grain boundaries shows the existence of an additional narrow neutral barrier, several 100 meV high, which is tunneled through by the majority carriers but is sufficiently high to explain the benign behavior of the grain boundaries.