Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883062

RESUMO

Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.


Assuntos
Diapausa , Animais , Diapausa/fisiologia , Implantação do Embrião/genética , Transdução de Sinais , Metabolismo Energético
2.
Nat Commun ; 13(1): 4462, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915093

RESUMO

Defects in cellular proteostasis and mitochondrial function drive many aspects of infertility, cancer, and other age-related diseases. All of these conditions rely on quiescent cells, such as oocytes and adult stem cells, that reduce their activity and remain dormant as part of their roles in tissue homeostasis, reproduction, and even cancer recurrence. Using a multi-organism approach, we show that dynamic shifts in the ubiquitin proteasome system drive mitochondrial remodeling during cellular quiescence. In contrast to the commonly held view that the ubiquitin-proteasome system (UPS) is primarily regulated by substrate ubiquitination, we find that increasing proteasome number and their recruitment to mitochondria support mitochondrial respiratory quiescence (MRQ). GSK3 triggers proteasome recruitment to the mitochondria by phosphorylating outer membrane proteins, such as VDAC, and suppressing mitochondrial fatty acid oxidation. This work defines a process that couples dynamic regulation of UPS activity to coordinated shifts in mitochondrial metabolism in fungi, Drosophila, and mammals during quiescence.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
3.
Curr Opin Genet Dev ; 45: 58-68, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28347941

RESUMO

During development, cells adopt distinct metabolic strategies to support growth, produce energy, and meet the demands of a mature tissue. Some of these metabolic states maintain a constrained program of nutrient utilization, while others providing metabolic flexibility as a means to couple developmental progression with nutrient availability. Here we discuss our understanding of metabolic programs, and how they support specific aspects of animal development. During phases of rapid proliferation a subset of metabolic programs provide the building blocks to support growth. During differentiation, metabolic programs shift to support the unique demands of each tissue. Finally, we discuss how a model system, such as Drosophila egg development, can provide a versatile platform to discover novel mechanisms controlling programmed shift in metabolism.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Drosophila/metabolismo , Metabolismo , Animais , Metabolismo Energético , Feminino , Hepatócitos/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Neurônios/metabolismo , Oogênese/fisiologia
4.
Cell ; 164(3): 420-32, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824655

RESUMO

Reproduction is heavily influenced by nutrition and metabolic state. Many common reproductive disorders in humans are associated with diabetes and metabolic syndrome. We characterized the metabolic mechanisms that support oogenesis and found that mitochondria in mature Drosophila oocytes enter a low-activity state of respiratory quiescence by remodeling the electron transport chain (ETC). This shift in mitochondrial function leads to extensive glycogen accumulation late in oogenesis and is required for the developmental competence of the oocyte. Decreased insulin signaling initiates ETC remodeling and mitochondrial respiratory quiescence through glycogen synthase kinase 3 (GSK3). Intriguingly, we observed similar ETC remodeling and glycogen uptake in maturing Xenopus oocytes, suggesting that these processes are evolutionarily conserved aspects of oocyte development. Our studies reveal an important link between metabolism and oocyte maturation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio/metabolismo , Oogênese , Xenopus laevis/embriologia , Animais , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Feminino , Fatores de Transcrição Forkhead/metabolismo , Mitocôndrias/metabolismo , Proteína Oncogênica v-akt/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Xenopus laevis/metabolismo
5.
Curr Biol ; 25(8): 993-1004, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25802149

RESUMO

Disruptions in energy homeostasis severely affect reproduction in many organisms and are linked to several reproductive disorders in humans. As a result, understanding the mechanisms that control nutrient accumulation in the oocyte will provide valuable insights into the links between metabolic disease and reproductive dysfunction. We show that the steroid hormone ecdysone functions in Drosophila to control lipid metabolism and support oocyte production. First, local EcR-mediated signaling induces a stage-specific accumulation of lipids in stage-10 oocytes. EcR induces lipid accumulation by promoting the activation of the lipogenic transcription factor SREBP and by controlling the expression of the low-density lipoprotein (LDL) receptor homolog, LpR2. Second, global signaling via the ecdysone receptor, EcR, establishes a female metabolic state and promotes whole-body triglyceride and glycogen storage at high levels. EcR acts in the CNS to mediate these effects, in part by promoting higher levels of feeding in females. Thus, ecdysone functions at two levels to support reproduction: first by inducing lipid accumulation in the late stages of oocyte development and second by providing a signal that coordinates lipid metabolism in the germline with whole-animal lipid homeostasis. Ecdysone regulation allows females to assess the demands of oogenesis and alter their behavior and metabolic state to support the biosynthetic requirements of oocyte production.


Assuntos
Ecdisona/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esteroides/farmacologia , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Feminino , Glicogênio/metabolismo , Oócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Triglicerídeos/metabolismo
6.
Cell Metab ; 15(1): 122-7, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22197324

RESUMO

Although transintestinal cholesterol efflux has been identified as an important means of clearing excess sterols, the mechanisms that underlie this process remain poorly understood. Here, we show that magro, a direct target of the Drosophila DHR96 nuclear receptor, is required in the intestine to maintain cholesterol homeostasis. magro encodes a LipA homolog that is secreted from the anterior gut into the intestinal lumen to digest dietary triacylglycerol. Expression of magro in intestinal cells is required to hydrolyze cholesterol esters and promote cholesterol clearance. Restoring magro expression in the intestine of DHR96 mutants rescues their defects in triacylglycerol and cholesterol metabolism. These studies show that the central role of the intestine in cholesterol efflux has been conserved through evolution, that the ancestral function of LipA is to coordinate triacylglycerol and cholesterol metabolism, and that the region-specific activities of magro correspond to the metabolic functions of its upstream regulator, DHR96.


Assuntos
Colesterol/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Triglicerídeos/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Homeostase/genética , Mutação , Proventrículo/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/genética
7.
Cell Metab ; 10(6): 481-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19945405

RESUMO

Triacylglycerol (TAG) homeostasis is an integral part of normal physiology and essential for proper energy metabolism. Here we show that the single Drosophila ortholog of the PXR and CAR nuclear receptors, DHR96, plays an essential role in TAG homeostasis. DHR96 mutants are sensitive to starvation, have reduced levels of TAG in the fat body and midgut, and are resistant to diet-induced obesity, while DHR96 overexpression leads to starvation resistance and increased TAG levels. We show that DHR96 function is required in the midgut for the breakdown of dietary fat and that it exerts this effect through the CG5932 gastric lipase, which is essential for TAG homeostasis. This study provides insights into the regulation of dietary fat metabolism in Drosophila and demonstrates that the regulation of lipid metabolism is an ancestral function of the PXR/CAR/DHR96 nuclear receptor subfamily.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lipase/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Triglicerídeos/metabolismo , Animais , Drosophila , Corpo Adiposo/metabolismo , Homeostase , Metabolismo dos Lipídeos , Masculino , Inanição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA