Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Biosci (Landmark Ed) ; 28(5): 99, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37258480

RESUMO

INTRODUCTION: Blood infections from multi-drug-resistant Salmonella pose a major health burden. This is especially true because Salmonella can survive and replicate intracellularly, and the development of new treatment strategies is dependent on expensive and time-consuming in vivo trials. The aim of this study was to develop a Salmonella-infection model that makes it possible to directly observe Salmonella infections of macrophages in vivo and to use this model to test the effect of antimicrobials against intra- and extracellular Salmonella in order to close the gap between in vitro and rodent-infection models. METHODS: We established suitable Salmonella-infection conditions using genetically engineered zebrafish and Salmonella-expressing fluorescent proteins (green fluorescent protein (GFP) and/or mCherry). RESULTS: We detected Salmonella inside and outside zebrafish larvae macrophages. Administration of the cell-impermeable antibiotic tobramycin removed Salmonella residing outside macrophages but did not affect Salmonella in macrophages, whereas ceftriaxone successfully cleared both types of Salmonella. Salmonella inside and outside macrophages experienced substantial DNA damage after administration of fluoroquinolones consistent with the excellent cell penetration of these antibiotics. CONCLUSIONS: The zebrafish-larvae model enables testing of antimicrobials for efficacy against extra- and intracellular Salmonella in a complex in vivo environment. This model thus might serve for antimicrobial lead optimization prior to using rodent models.


Assuntos
Antibacterianos , Peixe-Zebra , Animais , Larva , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Macrófagos/metabolismo , Salmonella/genética
2.
ACS Nano ; 15(3): 4144-4154, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33630589

RESUMO

Optical imaging probes have played a major role in detecting and monitoring a variety of diseases. In particular, nonlinear optical imaging probes, such as second harmonic generating (SHG) nanoprobes, hold great promise as clinical contrast agents, as they can be imaged with little background signal and unmatched long-term photostability. As their chemical composition often includes transition metals, the use of inorganic SHG nanoprobes can raise long-term health concerns. Ideally, contrast agents for biomedical applications should be degraded in vivo without any long-term toxicological consequences to the organism. Here, we developed biodegradable harmonophores (bioharmonophores) that consist of polymer-encapsulated, self-assembling peptides that generate a strong SHG signal. When functionalized with tumor cell surface markers, these reporters can target single cancer cells with high detection sensitivity in zebrafish embryos in vivo. Thus, bioharmonophores will enable an innovative approach to cancer treatment using targeted high-resolution optical imaging for diagnostics and therapy.


Assuntos
Imagem Molecular , Peixe-Zebra , Animais , Microscopia de Fluorescência , Peptídeos
3.
Adv Healthc Mater ; 9(17): e2000529, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729247

RESUMO

Biohybrid nanosystems represent the cutting-edge research in biofunctionalization of micro- and nano-systems. Their physicochemical properties bring along advantages in the circulation time, camouflaging from the phagocytes, and novel antigens. This is partially a result of the qualitative differences in the protein corona, and the preferential targeting and uptake in homologous cells. However, the effect of the cell membrane on the cellular endocytosis mechanisms and time has not been fully evaluated yet. Here, the effect is assessed by quantitative flow cytometry analysis on the endocytosis of hydrophilic, negatively charged porous silicon nanoparticles and on their membrane-coated counterparts, in the presence of chemical inhibitors of different uptake pathways. Principal component analysis is used to analyze all the data and extrapolate patterns to highlight the cell-specific differences in the endocytosis mechanisms. Furthermore, the differences in the composition of static protein corona between naked and coated particles are investigated together with how these differences affect the interaction with human macrophages. Overall, the presence of the cell membrane only influences the speed and the entity of nanoparticles association with the cells, while there is no direct effect on the endocytosis pathways, composition of protein corona, or any reduction in macrophage-mediated uptake.


Assuntos
Nanopartículas , Coroa de Proteína , Membrana Celular , Endocitose , Humanos , Porosidade , Silício
4.
Small ; 16(31): e2000746, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567135

RESUMO

Metal-based nanoparticles are clinically used for diagnostic and therapeutic applications. After parenteral administration, they will distribute throughout different organs. Quantification of their distribution within tissues in the 3D space, however, remains a challenge owing to the small particle diameter. In this study, synchrotron radiation-based hard X-ray tomography (SRµCT) in absorption and phase contrast modes is evaluated for the localization of superparamagnetic iron oxide nanoparticles (SPIONs) in soft tissues based on their electron density and X-ray attenuation. Biodistribution of SPIONs is studied using zebrafish embryos as a vertebrate screening model. This label-free approach gives rise to an isotropic, 3D, direct space visualization of the entire 2.5 mm-long animal with a spatial resolution of around 2 µm. High resolution image stacks are available on a dedicated internet page (http://zebrafish.pharma-te.ch). X-ray tomography is combined with physico-chemical characterization and cellular uptake studies to confirm the safety and effectiveness of protective SPION coatings. It is demonstrated that SRµCT provides unprecedented insights into the zebrafish embryo anatomy and tissue distribution of label-free metal oxide nanoparticles.


Assuntos
Nanopartículas de Magnetita , Nanopartículas Metálicas , Animais , Óxidos , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Peixe-Zebra
5.
Nanoscale ; 12(17): 9786-9799, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32328600

RESUMO

DNA has been widely used as a key tether to promote self-organization of super-assemblies with emergent properties. However, control of this process is still challenging for compartment assemblies and to date the resulting assemblies have unstable membranes precluding in vitro and in vivo testing. Here we present our approach to overcome these limitations, by manipulating molecular factors such as compartment membrane composition and DNA surface density, thereby controlling the size and stability of the resulting DNA-linked compartment clusters. The soft, flexible character of the polymer membrane and low number of ssDNA remaining exposed after cluster formation determine the interaction of these clusters with the cell surface. These clusters exhibit in vivo stability and lack of toxicity in a zebrafish model. To display the breadth of therapeutic applications attainable with our system, we encapsulated the medically established enzyme laccase within the inner compartment and demonstrated its activity within the clustered compartments. Most importantly, these clusters can interact selectively with different cell lines, opening a new strategy to modify and expand cellular functions by attaching such pre-organized soft DNA-mediated compartment clusters on cell surfaces for cell engineering or therapeutic applications.


Assuntos
DNA/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Animais , Catálise , Linhagem Celular Tumoral , Membrana Celular/metabolismo , DNA/metabolismo , Células HEK293 , Humanos , Lacase/química , Lacase/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Polímeros/química , Polímeros/metabolismo , Polímeros/farmacocinética , Polímeros/toxicidade , Receptores Depuradores/antagonistas & inibidores , Receptores Depuradores/metabolismo , Distribuição Tecidual , Peixe-Zebra
6.
Adv Sci (Weinh) ; 7(4): 1901923, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099756

RESUMO

Despite huge need in the medical domain and significant development efforts, artificial cells to date have limited composition and functionality. Although some artificial cells have proven successful for producing therapeutics or performing in vitro specific reactions, they have not been investigated in vivo to determine whether they preserve their architecture and functionality while avoiding toxicity. Here, these limitations are overcome and customizable cell mimic is achieved-molecular factories (MFs)-by supplementing giant plasma membrane vesicles derived from donor cells with nanometer-sized artificial organelles (AOs). MFs inherit the donor cell's natural cytoplasm and membrane, while the AOs house reactive components and provide cell-like architecture and functionality. It is demonstrated that reactions inside AOs take place in a close-to-nature environment due to the unprecedented level of complexity in the composition of the MFs. It is further demonstrated that in a zebrafish vertebrate animal model, these cell mimics show no apparent toxicity and retain their integrity and function. The unique advantages of highly varied composition, multicompartmentalized architecture, and preserved functionality in vivo open new biological avenues ranging from the study of biorelevant processes in robust cell-like environments to the production of specific bioactive compounds.

7.
Bioconjug Chem ; 31(3): 781-793, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31894970

RESUMO

The concept of triggered drug release offers a possibility to overcome the toxic side effects of chemotherapeutics in cancer treatment by reducing systemic exposure to the active drug. In the present work, the concept foresees the use of the extracellular enzyme MMP9 as an enzymatic trigger for drug release in the proximity of tumor cells. METHODS: A paclitaxel-hemisuccinate-peptide conjugate as a building block for self-assembling nanoparticles was synthesized using standard conjugation approaches. The building block was purified via preparative HPLC and analyzed by LC-MS. Nanoparticles were formed using the nanoprecipitation method and characterized. For selection of a suitable in vitro model system, common bioanalytical methods were used to determine mRNA expression, enzyme amount, and activity of MMP9. RESULTS: The MMP9-labile prodrug was synthesized and characterized. Nanoparticles were formed out of MMP9-labile conjugate-building blocks. The nanoparticle's diameter averaged at around 120 nm and presented a spherical shape. LN-18 cells, a glioblastoma multiforme derived cell line, were chosen as an in vitro model based on findings in cancer tissue and cell line characterization. The prodrug showed cytotoxicity in LN-18 cells, which was reduced by addition of an MMP9 inhibitor. CONCLUSION: taken together, we confirmed increased MMP9 in several cancer tissues (cervical, esophageal, lung, and brain) compared to healthy tissue and showed the effectiveness of MMP9-labile prodrug in in vitro tests.


Assuntos
Desenho de Fármacos , Espaço Extracelular/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Paclitaxel/química , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Química Sintética , Humanos , Metaloproteinase 9 da Matriz/genética , Paclitaxel/metabolismo , Tamanho da Partícula , Peptídeos/química , Polietilenoglicóis/química , RNA Mensageiro/genética
8.
Small ; 15(50): e1904716, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722126

RESUMO

Circulation lifetime is a crucial parameter for a successful therapy with nanoparticles. Reduction and alteration of opsonization profiles by surface modification of nanoparticles is the main strategy to achieve this objective. In clinical settings, PEGylation is the most relevant strategy to enhance blood circulation, yet it has drawbacks, including hypersensitivity reactions in some patients treated with PEGylated nanoparticles, which fuel the search for alternative strategies. In this work, lipopolysarcosine derivatives (BA-pSar, bisalkyl polysarcosine) with precise chain lengths and low polydispersity indices are synthesized, characterized, and incorporated into the bilayer of preformed liposomes via a post insertion technique. Successful incorporation of BA-pSar can be realized in a clinically relevant liposomal formulation. Furthermore, BA-pSar provides excellent surface charge shielding potential for charged liposomes and renders their surface neutral. Pharmacokinetic investigations in a zebrafish model show enhanced circulation properties and reduction in macrophage recognition, matching the behavior of PEGylated liposomes. Moreover, complement activation, which is a key factor in hypersensitivity reactions caused by PEGylated liposomes, can be reduced by modifying the surface of liposomes with an acetylated BA-pSar derivative. Hence, this study presents an alternative surface modification strategy with similar benefits as the established PEGylation of nanoparticles, but with the potential of reducing its drawbacks.


Assuntos
Lipossomos/química , Peptídeos/química , Sarcosina/análogos & derivados , Animais , Animais Geneticamente Modificados , Ativação do Complemento , Lipossomos/farmacocinética , Lipossomos/ultraestrutura , Peso Molecular , Peptídeos/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Sarcosina/síntese química , Sarcosina/química , Eletricidade Estática , Propriedades de Superfície , Peixe-Zebra/genética
9.
Elife ; 82019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31333191

RESUMO

Active targeting and specific drug delivery to parenchymal liver cells is a promising strategy to treat various liver disorders. Here, we modified synthetic lipid-based nanoparticles with targeting peptides derived from the hepatitis B virus large envelope protein (HBVpreS) to specifically target the sodium-taurocholate cotransporting polypeptide (NTCP; SLC10A1) on the sinusoidal membrane of hepatocytes. Physicochemical properties of targeted nanoparticles were optimized and NTCP-specific, ligand-dependent binding and internalization was confirmed in vitro. The pharmacokinetics and targeting capacity of selected lead formulations was investigated in vivo using the emerging zebrafish screening model. Liposomal nanoparticles modified with 0.25 mol% of a short myristoylated HBV derived peptide, that is Myr-HBVpreS2-31, showed an optimal balance between systemic circulation, avoidance of blood clearance, and targeting capacity. Pronounced liver enrichment, active NTCP-mediated targeting of hepatocytes and efficient cellular internalization were confirmed in mice by 111In gamma scintigraphy and fluorescence microscopy demonstrating the potential use of our hepatotropic, ligand-modified nanoparticles.


Assuntos
Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/administração & dosagem , Transportadores de Ânions Orgânicos Dependentes de Sódio/farmacocinética , Simportadores/farmacocinética , Animais , Antígenos de Superfície da Hepatite B/administração & dosagem , Fígado/diagnóstico por imagem , Transportadores de Ânions Orgânicos Dependentes de Sódio/administração & dosagem , Cintilografia , Simportadores/administração & dosagem , Peixe-Zebra
10.
Nanomedicine ; 17: 82-93, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659929

RESUMO

Macrophage recognition of nanoparticles is highly influenced by particle size and surface modification. Due to the lack of appropriate in vivo screening models, it is still challenging and time-consuming to characterize and optimize nanomedicines regarding this undesired clearance mechanism. Therefore, we validate zebrafish embryos as an emerging vertebrate screening tool to assess the macrophage sequestration of surface modified particulate formulations with varying particle size under realistic biological conditions. Liposomes with different PEG molecular weights (PEG350-PEG5000) at different PEG densities (3.0-10.0 mol%) and particle sizes between 60 and 120 nm were used as a well-established reference system showing various degrees of macrophage uptake. The results of in vitro experiments, zebrafish embryos, and in vivo rodent biodistribution studies were consistent, highlighting the validity of the newly introduced zebrafish macrophage clearance model. We hereby present a strategy for efficient, systematic and rapid nanomedicine optimization in order to facilitate the preclinical development of nanotherapeutics.


Assuntos
Lipossomos/metabolismo , Macrófagos/metabolismo , Polietilenoglicóis/metabolismo , Animais , Transporte Biológico , Feminino , Células Hep G2 , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Modelos Animais , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Ratos Wistar , Distribuição Tecidual , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
11.
Adv Drug Deliv Rev ; 151-152: 152-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30615917

RESUMO

The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.


Assuntos
Modelos Animais de Doenças , Nanomedicina , Neoplasias/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Terapia Genética , Nanopartículas/química , Peixe-Zebra
12.
Drug Deliv Transl Res ; 9(1): 404-413, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30306459

RESUMO

Liposomes have attracted much attention as the first nanoformulations entering the clinic. The optimization of physicochemical properties of liposomes during nanomedicine development however is time-consuming and challenging despite great advances in formulation development. Here, we present a systematic approach for the rapid size optimization of liposomes. The combination of microfluidics with a design-of-experiment (DoE) approach offers a strategy to rapidly screen and optimize various liposome formulations, i.e., up to 30 liposome formulations in 1 day. Five representative liposome formulations based on clinically approved lipid compositions were formulated using systematic variations in microfluidics flow rate settings, i.e., flow rate ratio (FRR) and total flow rate (TFR). Interestingly, flow rate-dependent DoE models for the prediction of liposome characteristics could be grouped according to lipid-phase transition temperature and surface characteristics. For all formulations, the FRR had a significant impact (p < 0.001) on hydrodynamic diameter and size distribution of liposomes, while the TFR mainly affected the production rate. Liposome characteristics remained constant for TFRs above 8 mL/min. The stability study revealed an influence of lipid:cholesterol ratio (1:1 and 2:1 ratio) and presence of PEG on liposome characteristics during storage. To validate our DoE models, we formulated liposomes incorporating hydrophobic dodecanethiol-coated gold nanoparticles. This proof-of-concept step showed that flow rate settings predicted by DoE models successfully determined the size of resulting empty liposomes (109.3 ± 15.3 nm) or nanocomposites (111 ± 17.3 nm). This study indicates that a microfluidics-based formulation approach combined with DoE is suitable for the routine development of monodisperse and size-specific liposomes in a reproducible and rapid manner.


Assuntos
Colesterol/química , Ouro/química , Microfluídica/métodos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Lipídeos/química , Lipossomos , Nanopartículas Metálicas , Tamanho da Partícula , Projetos de Pesquisa
13.
ACS Nano ; 12(3): 2138-2150, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29320626

RESUMO

Up to 99% of systemically administered nanoparticles are cleared through the liver. Within the liver, most nanoparticles are thought to be sequestered by macrophages (Kupffer cells), although significant nanoparticle interactions with other hepatic cells have also been observed. To achieve effective cell-specific targeting of drugs through nanoparticle encapsulation, improved mechanistic understanding of nanoparticle-liver interactions is required. Here, we show the caudal vein of the embryonic zebrafish ( Danio rerio) can be used as a model for assessing nanoparticle interactions with mammalian liver sinusoidal (or scavenger) endothelial cells (SECs) and macrophages. We observe that anionic nanoparticles are primarily taken up by SECs and identify an essential requirement for the scavenger receptor, stabilin-2 ( stab2) in this process. Importantly, nanoparticle-SEC interactions can be blocked by dextran sulfate, a competitive inhibitor of stab2 and other scavenger receptors. Finally, we exploit nanoparticle-SEC interactions to demonstrate targeted intracellular drug delivery resulting in the selective deletion of a single blood vessel in the zebrafish embryo. Together, we propose stab2 inhibition or targeting as a general approach for modifying nanoparticle-liver interactions of a wide range of nanomedicines.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Macrófagos/metabolismo , Nanopartículas/metabolismo , Receptores Depuradores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Lipossomos/análise , Lipossomos/metabolismo , Camundongos , Nanopartículas/análise , Distribuição Tecidual , Peixe-Zebra/metabolismo
14.
J Control Release ; 264: 180-191, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28851572

RESUMO

Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure.


Assuntos
Sistemas de Liberação de Medicamentos , Modelos Animais , Nanopartículas/administração & dosagem , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Transporte Biológico , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Embrião não Mamífero , Feminino , Ensaios de Triagem em Larga Escala , Lipossomos , Ratos Wistar , Trítio
15.
J Control Release ; 260: 46-60, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28536049

RESUMO

The lack of efficient therapeutic options for many severe disorders including cancer spurs demand for improved drug delivery technologies. Nanoscale drug delivery systems based on poly(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-PCL) represent a strategy to implement therapies with enhanced drug accumulation at the site of action and decreased off-target effects. In this review, we discuss state-of-the-art nanomedicines based on PEG-PCL that have been investigated in a preclinical setting. We summarize the various synthesis routes and different preparation methods used for the production of PEG-PCL nanoparticles. Additionally, we review physico-chemical properties including biodegradability, biocompatibility, and drug loading. Finally, we highlight recent therapeutic applications investigated in vitro and in vivo using advanced systems such as triggered release, multi-component therapies, theranostics, or gene delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Poliésteres , Polietilenoglicóis , Animais , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Nanomedicina , Nanopartículas/efeitos adversos , Nanopartículas/química , Poliésteres/efeitos adversos , Poliésteres/química , Poliésteres/farmacocinética , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética
16.
Macromol Biosci ; 17(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28388000

RESUMO

Enzyme immobilization is of high interest for industrial applications. However, immobilization may compromise enzyme activity or stability due to the harsh conditions which have to be applied. The authors therefore present a new and improved crosslinked layer-by-layer (cLbL) approach. Two different model enzymes (acid phosphatase and ß-galactosidase) are immobilized under mild conditions on biocompatible, monodisperse, sub-micrometer poly(lactide-co-glycolide) (PLGA) particles. The resulting PLGA enzyme systems are characterized regarding their size, surface charge, enzyme activity, storage stability, reusability, and stability under various conditions such as changing pH and temperature. The developed and characterized cLbL protocol can be easily adapted to different enzymes. Potential future uses of the technology for biomedical applications are discussed. PLGA-enzyme particles are therefore injected into the blood circulation of zebrafish embryos in order to demonstrate the in vivo stability and activity of the designed system.


Assuntos
Fosfatase Ácida/química , Aspergillus oryzae/enzimologia , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Ácido Láctico/química , Proteínas de Plantas/química , Ácido Poliglicólico/química , Solanum tuberosum/enzimologia , beta-Galactosidase/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA