Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 10: 664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019507

RESUMO

Interleukin-1ß (IL-1ß) is a potent, pro-inflammatory cytokine of the innate immune system that plays an essential role in host defense against infection. However, elevated circulating levels of IL-1ß can cause life-threatening systemic inflammation. Hence, mechanisms controlling IL-1ß maturation and release are of outstanding clinical interest. Secretory leukocyte protease inhibitor (SLPI), in addition to its well-described anti-protease function, controls the expression of several pro-inflammatory cytokines on the transcriptional level. In the present study, we tested the potential involvement of SLPI in the control of ATP-induced, inflammasome-dependent IL-1ß maturation and release. We demonstrated that SLPI dose-dependently inhibits the ATP-mediated inflammasome activation and IL-1ß release in human monocytic cells, without affecting the induction of pro-IL-1ß mRNA by LPS. In contrast, the ATP-independent IL-1ß release induced by the pore forming bacterial toxin nigericin is not impaired, and SLPI does not directly modulate the ion channel function of the human P2X7 receptor heterologously expressed in Xenopus laevis oocytes. In human monocytic U937 cells, however, SLPI efficiently inhibits ATP-induced ion-currents. Using specific inhibitors and siRNA, we demonstrate that SLPI activates the calcium-independent phospholipase A2ß (iPLA2ß) and leads to the release of a low molecular mass factor that mediates the inhibition of IL-1ß release. Signaling involves nicotinic acetylcholine receptor subunits α7, α9, α10, and Src kinase activation and results in an inhibition of ATP-induced caspase-1 activation. In conclusion, we propose a novel anti-inflammatory mechanism induced by SLPI, which inhibits the ATP-dependent maturation and secretion of IL-1ß. This novel signaling pathway might lead to development of therapies that are urgently needed for the prevention and treatment of systemic inflammation.


Assuntos
Trifosfato de Adenosina/metabolismo , Interleucina-1beta/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/genética , Animais , Linhagem Celular , Células Cultivadas , Citocinas/biossíntese , Expressão Gênica , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
2.
Front Immunol ; 9: 877, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922281

RESUMO

While interleukin (IL)-1ß is a potent pro-inflammatory cytokine involved in host defense, high levels can cause life-threatening sterile inflammation including systemic inflammatory response syndrome. Hence, the control of IL-1ß secretion is of outstanding biomedical importance. In response to a first inflammatory stimulus such as lipopolysaccharide, pro-IL-1ß is synthesized as a cytoplasmic inactive pro-form. Extracellular ATP originating from injured cells is a prototypical second signal for inflammasome-dependent maturation and release of IL-1ß. The human anti-protease alpha-1 antitrypsin (AAT) and IL-1ß regulate each other via mechanisms that are only partially understood. Here, we demonstrate that physiological concentrations of AAT efficiently inhibit ATP-induced release of IL-1ß from primary human blood mononuclear cells, monocytic U937 cells, and rat lung tissue, whereas ATP-independent IL-1ß release is not impaired. Both, native and oxidized AAT are active, suggesting that the inhibition of IL-1ß release is independent of the anti-elastase activity of AAT. Signaling of AAT in monocytic cells involves the lipid scavenger receptor CD36, calcium-independent phospholipase A2ß, and the release of a small soluble mediator. This mediator leads to the activation of nicotinic acetylcholine receptors, which efficiently inhibit ATP-induced P2X7 receptor activation and inflammasome assembly. We suggest that AAT controls ATP-induced IL-1ß release from human mononuclear blood cells by a novel triple-membrane-passing signaling pathway. This pathway may have clinical implications for the prevention of sterile pulmonary and systemic inflammation.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , alfa 1-Antitripsina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD36/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leucócitos Mononucleares , Cultura Primária de Células , Ratos , Receptores Purinérgicos P2X7/metabolismo , Células U937 , alfa 1-Antitripsina/imunologia
3.
Front Cell Neurosci ; 11: 189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725182

RESUMO

Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1ß (IL-1ß) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1ß by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1ß release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1ß. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopuslaevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA