Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biophotonics ; : e202300460, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719468

RESUMO

Skin architecture and its underlying vascular structure could be used to assess the health status of skin. A non-invasive, high resolution and deep imaging modality able to visualize skin subcutaneous layers and vasculature structures could be useful for determining and characterizing skin disease and trauma. In this study, a multispectral high-frequency, linear array-based photoacoustic/ultrasound (PAUS) probe is developed and implemented for the imaging of rat skin in vivo. The study seeks to demonstrate the probe capabilities for visualizing the skin and its underlying structures, and for monitoring changes in skin structure and composition during a 5-day course of a chemical burn. We analayze composition of lipids, water, oxy-hemoglobin, and deoxy-hemoglobin (for determination of oxygen saturation) in the skin tissue. The study successfully demonstrated the high-frequency PAUS imaging probe was able to provide 3D images of the rat skin architecture, underlying vasculature structures, and oxygen saturation, water, lipids and total hemoglobin.

3.
Polymers (Basel) ; 16(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543357

RESUMO

Bio-based plastics made of food-safe compostable materials, such as thermoplastic starch (TPS), can be designed into films that have potential to replace many non-biodegradable single-use plastic (SUP) items. TPS film characteristics, such as elongation at break and tensile strength, are largely affected by the choice of the plasticizers used in formulation. Our work identifies the mechanical properties and the chemical structural differences between TPS films made with two different plasticizer mixtures that have not yet been compared alongside one another: deep eutectic solvent choline chloride/urea (1:2) (CC:U) and glycerol with an acetic acid catalyst (AA:G). Potato-based TPS samples were formed by mixing each plasticizer with a consistent amount of potato starch and distilled water with heat. After gelation formation, the viscous TPS mixture was centrifuged to degas and extruded. Films were dried at controlled room temperature. Characterization included the tensile testing of coupons according to ASTM (American Society of Testing and Materials) standard D638, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), melting point (MP), and scanning electron microscopy (SEM). The AA:G films displayed significantly higher tensile strength (M = 2.04 ± 1.24 MPa) than the CC:U films (M = 0.18 ± 0.08 MPa); however, the CC:U films had higher elongation at break (M = 47.2 ± 3.6%) than the AA:G films (M = 31.1 ± 12.6%). This can be explained by the difference in functional groups, composition, and the degree of crystallinity evidenced by the FTIR, XRD, MP, and SEM results. Our findings suggest that potato-based TPS films with an AA:G plasticizer mixture hold promise for SUP applications that require more strength, while CC:U films may be more suited for wraps and bags that require flexibility. These innovations can aid to mitigate the environmental impact of harmful plastic waste.

4.
Light Sci Appl ; 12(1): 283, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996426

RESUMO

Diabetes progression is marked by damage to vascular and neural networks. Raster-scan optoacoustic mesoscopy holds the potential to measure extent of diabetes progression by analyzing changes in skin vasculature.

5.
Photoacoustics ; 33: 100549, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37664559

RESUMO

Intraventricular (IVH) and periventricular (PVH) hemorrhages in preterm neonates are common because the periventricular blood vessels are still developing up to 36 weeks and are fragile. Currently, transfontanelle ultrasound (US) imaging is utilized for screening for IVH and PVH, largely through the anterior fontanelle. However for mild hemorrhages, inconclusive diagnoses are common, leading to failure to detect IVH/PVH or, when other clinical symptoms are present, use of second stage neuroimaging modalities requiring transport of vulnerable patients. Yet even mild IVH/PVH increases the risk of moderate-severe neurodevelopmental impairment. Here, we demonstrate the capability of transfontanelle photoacoustic imaging (TFPAI) to detect IVH and PVH in-vivo in a large animal model. TFPAI was able to detect IVH/PVH as small as 0.3 mL in volume in the brain (p < 0.05). By contrast, US was able to detect hemorrhages as small as 0.5 mL. These preliminary results suggest TFPAI could be translated into a portable bedside imaging probe for improved diagnosis of clinically relevant brain hemorrhages in neonates.

6.
Cancers (Basel) ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831694

RESUMO

Canines can identify prostate cancer with high accuracy by smelling volatile organic compounds (VOCs) in urine. Previous studies have identified VOC biomarkers for prostate cancer utilizing solid phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) but have not assessed the ability of VOCs to distinguish aggressive cancers. Additionally, previous investigations have utilized murine models to identify biomarkers but have not determined if the results are translatable to humans. To address these challenges, urine was collected from mice with prostate cancer and men undergoing prostate cancer biopsy and VOCs were analyzed by SPME GC-MS. Prior to analysis, SPME fibers/arrows were compared, and the fibers had enhanced sensitivity toward VOCs with a low molecular weight. The analysis of mouse urine demonstrated that VOCs could distinguish tumor-bearing mice with 100% accuracy. Linear discriminant analysis of six VOCs in human urine distinguished prostate cancer with sensitivity = 75% and specificity = 69%. Another panel of seven VOCs could classify aggressive cancer with sensitivity = 78% and specificity = 85%. These results show that VOCs have moderate accuracy in detecting prostate cancer and a superior ability to stratify aggressive tumors. Furthermore, the overlap in the structure of VOCs identified in humans and mice shows the merit of murine models for identifying biomarker candidates.

7.
J Chromatogr A ; 1685: 463606, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36370629

RESUMO

Volatile organic compounds (VOCs) are biomarkers of disease, which can be utilized for accurate diagnostics. The gold standard for VOC identification is gas chromatography-mass spectrometry (GC-MS) as it allows for structure elucidation and quantification. Headspace solid phase microextraction (HS-SPME) is often used in biomarker discovery due to its ability to preconcentrate VOCs prior to GC-MS analysis. However, HS-SPME GC-MS is time-consuming, expensive and requires trained personnel. Gas sensor arrays can detect VOC biomarkers at a point-of-care and therefore are more suitable for disease diagnostics in the clinic. Nevertheless, qualification and optimization of sensing layers is tedious as each VOC of interest needs to be tested individually. Therefore, using SPME fibers to extract VOCs and GC-MS to quantitate the analytes may be an efficient strategy with high throughput to tune sensing layers and increase analyte affinity. To investigate this, suspensions of polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-carbon black (PVDF-CB) fabricated at varying concentration were immobilized on SPME fibers through physical deposition, used to extract urinary VOCs and were subject to GC-MS analysis. The addition of CB shows increased fiber performance in terms of total integrated signal and sensitivity toward individual VOCs. PVDF-CB fibers were compared to a commercial polydimethylsiloxane (PDMS) SPME fiber run using the same method. The PVDF-CB fiber outperformed the commercial fiber in detecting numerous urinary VOCs of interest. Results of this study show not only that custom SPME fiber performance can be evaluated through GC-MS analysis, but the capability of custom fibers to adsorb urinary VOCs can be tuned based on properties of interest. Hence, this method may be utilized as an analytical tool to characterize and tune gas sensing layers with high analytical throughput.


Assuntos
Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Fuligem , Fibras na Dieta/análise
8.
Molecules ; 27(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35807522

RESUMO

Volatile organic compounds (VOCs) in urine are potential biomarkers of breast cancer. Previously, our group has investigated breast cancer through analysis of VOCs in mouse urine and identified a panel of VOCs with the ability to monitor tumor progression. However, an unanswered question is whether VOCs can be exploited similarly to monitor the efficacy of antitumor treatments over time. Herein, subsets of tumor-bearing mice were treated with pitavastatin at high (8 mg/kg) and low (4 mg/kg) concentrations, and urine was analyzed through solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Previous investigations using X-ray and micro-CT analysis indicated pitavastatin administered at 8 mg/kg had a protective effect against mammary tumors, whereas 4 mg/kg treatments did not inhibit tumor-induced damage. VOCs from mice treated with pitavastatin were compared to the previously analyzed healthy controls and tumor-bearing mice using chemometric analyses, which revealed that mice treated with pitavastatin at high concentrations were significantly different than tumor-bearing untreated mice in the direction of healthy controls. Mice treated with low concentrations demonstrated significant differences relative to healthy controls and were reflective of tumor-bearing untreated mice. These results show that urinary VOCs can accurately and noninvasively predict the efficacy of pitavastatin treatments over time.


Assuntos
Neoplasias Mamárias Animais , Compostos Orgânicos Voláteis , Animais , Quimiometria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Camundongos , Quinolinas , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
9.
J Breath Res ; 16(3)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453137

RESUMO

COVID-19 detection currently relies on testing by reverse transcription polymerase chain reaction (RT-PCR) or antigen testing. However, SARS-CoV-2 is expected to cause significant metabolic changes in infected subjects due to both metabolic requirements for rapid viral replication and host immune responses. Analysis of volatile organic compounds (VOCs) from human breath can detect these metabolic changes and is therefore an alternative to RT-PCR or antigen assays. To identify VOC biomarkers of COVID-19, exhaled breath samples were collected from two sample groups into Tedlar bags: negative COVID-19 (n= 12) and positive COVID-19 symptomatic (n= 14). Next, VOCs were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Subjects with COVID-19 displayed a larger number of VOCs as well as overall higher total concentration of VOCs (p< 0.05). Univariate analyses of qualified endogenous VOCs showed approximately 18% of the VOCs were significantly differentially expressed between the two classes (p< 0.05), with most VOCs upregulated. Machine learning multivariate classification algorithms distinguished COVID-19 subjects with over 95% accuracy. The COVID-19 positive subjects could be differentiated into two distinct subgroups by machine learning classification, but these did not correspond with significant differences in number of symptoms. Next, samples were collected from subjects who had previously donated breath bags while experiencing COVID-19, and subsequently recovered (COVID Recovered subjects (n= 11)). Univariate and multivariate results showed >90% accuracy at identifying these new samples as Control (COVID-19 negative), thereby validating the classification model and demonstrating VOCs dysregulated by COVID are restored to baseline levels upon recovery.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Testes Respiratórios/métodos , Expiração , Humanos , SARS-CoV-2 , Compostos Orgânicos Voláteis/análise
10.
Bone Res ; 9(1): 26, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031366

RESUMO

Mechanical loading to the bone is known to be beneficial for bone homeostasis and for suppressing tumor-induced osteolysis in the loaded bone. However, whether loading to a weight-bearing hind limb can inhibit distant tumor growth in the brain is unknown. We examined the possibility of bone-to-brain mechanotransduction using a mouse model of a brain tumor by focusing on the response to Lrp5-mediated Wnt signaling and dopamine in tumor cells. The results revealed that loading the tibia with elevated levels of tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis, markedly reduced the progression of the brain tumors. The simultaneous application of fluphenazine (FP), an antipsychotic dopamine modulator, enhanced tumor suppression. Dopamine and FP exerted antitumor effects through the dopamine receptors DRD1 and DRD2, respectively. Notably, dopamine downregulated Lrp5 via DRD1 in tumor cells. A cytokine array analysis revealed that the reduction in CCN4 was critical for loading-driven, dopamine-mediated tumor suppression. The silencing of Lrp5 reduced CCN4, and the administration of CCN4 elevated oncogenic genes such as MMP9, Runx2, and Snail. In summary, this study demonstrates that mechanical loading regulates dopaminergic signaling and remotely suppresses brain tumors by inhibiting the Lrp5-CCN4 axis via DRD1, indicating the possibility of developing an adjuvant bone-mediated loading therapy.

11.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806757

RESUMO

Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This typically causes tumor progression and osteolysis in 1-2 weeks. Samples were collected prior to tumor injection and from days 2-19. Samples were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Univariate analysis identified VOCs that were biomarkers for breast cancer; some of these varied significantly over time and others did not. Principal component analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3 with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1 from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer.

12.
J Vasc Surg Cases Innov Tech ; 7(2): 357-360, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33688601

RESUMO

Many patients hospitalized with coronavirus disease 2019 are treated with venovenous extracorporeal membrane oxygenation and prone positioning to optimize oxygenation. However, this combination can result in lower extremity tissue necrosis, especially without adequate offloading. We report the case of a 31-year-old man who required mechanical ventilation and venovenous extracorporeal membrane oxygenation secondary to complications from coronavirus disease 2019, and subsequently developed pedal dry gangrene. The patient was discharged and healed without requiring an amputation. Our institution has since revised the prone positioning protocol to address offloading the lower extremities and feet.

13.
Gastroenterology ; 160(7): 2317-2327.e2, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610532

RESUMO

BACKGROUND AND AIMS: Endoscopic submucosal dissection (ESD) in Asia has been shown to be superior to endoscopic mucosal resection (EMR) and surgery for the management of selected early gastrointestinal cancers. We aimed to evaluate technical outcomes of ESD in North America. METHODS: We conducted a multicenter prospective study on ESD across 10 centers in the United States and Canada between April 2016 and April 2020. End points included rates of en bloc resection, R0 resection, curative resection, adverse events, factors associated with failed resection, and recurrence post-R0 resection. RESULTS: Six hundred and ninety-two patients (median age, 66 years; 57.8% were men) underwent ESD (median lesion size, 40 mm; interquartile range, 25-52 mm) for lesions in the esophagus (n = 181), stomach (n = 101), duodenum (n = 11), colon (n = 211) and rectum (n = 188). En bloc, R0, and curative resection rates were 91.5%, 84.2%, and 78.3%, respectively. Bleeding and perforation were reported in 2.3% and 2.9% of the cases, respectively. Only 1 patient (0.14%) required surgery for adverse events. On multivariable analysis, severe submucosal fibrosis was associated with failed en bloc, R0, and curative resection and higher risk for adverse events. Overall recurrence was 5.8% (31 of 532) at a mean follow-up of 13.3 months (range, 1-60 months). CONCLUSIONS: In this large multicenter prospective North American experience, we demonstrate that ESD can be performed safely, effectively, and is associated with a low recurrence rate. The technical resection outcomes achieved in this study are in line with the current established consensus quality parameters and further support the implementation of ESD for the treatment of select gastrointestinal neoplasms; ClinicalTrials.gov, Number: NCT02989818.


Assuntos
Ressecção Endoscópica de Mucosa/estatística & dados numéricos , Neoplasias Gastrointestinais/cirurgia , Trato Gastrointestinal/cirurgia , Idoso , Canadá/epidemiologia , Ressecção Endoscópica de Mucosa/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Período Pós-Operatório , Estudos Prospectivos , Resultado do Tratamento , Estados Unidos/epidemiologia
14.
Clin Gastroenterol Hepatol ; 19(8): 1611-1619.e1, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32565290

RESUMO

BACKGROUND & AIMS: Endoscopic submucosal dissection (ESD) is a widely accepted treatment option for superficial gastric neoplasia in Asia, but there are few data on outcomes of gastric ESD from North America. We aimed to evaluate the safety and efficacy of gastric ESD in North America. METHODS: We analyzed data from 347 patients who underwent gastric ESD at 25 centers, from 2010 through 2019. We collected data on patient demographics, lesion characteristics, procedure details and related adverse events, treatment outcomes, local recurrence, and vital status at the last follow up. For the 277 patients with available follow-up data, the median interval between initial ESD and last clinical or endoscopic evaluation was 364 days. The primary endpoint was the rate of en bloc and R0 resection. Secondary outcomes included curative resection, rates of adverse events and recurrence, and gastric cancer-related death. RESULTS: Ninety patients (26%) had low-grade adenomas or dysplasia, 82 patients (24%) had high-grade dysplasia, 139 patients (40%) had early gastric cancer, and 36 patients (10%) had neuroendocrine tumors. Proportions of en bloc and R0 resection for all lesions were 92%/82%, for early gastric cancers were 94%/75%, for adenomas and low-grade dysplasia were 93%/ 92%, for high-grade dysplasia were 89%/ 87%, and for neuroendocrine tumors were 92%/75%. Intraprocedural perforation occurred in 6.6% of patients; 82% of these were treated successfully with endoscopic therapy. Delayed bleeding occurred in 2.6% of patients. No delayed perforation or procedure-related deaths were observed. There were local recurrences in 3.9% of cases; all occurred after non-curative ESD resection. Metachronous lesions were identified in 14 patients (6.9%). One of 277 patients with clinical follow up died of metachronous gastric cancer that occurred 2.5 years after the initial ESD. CONCLUSIONS: ESD is a highly effective treatment for superficial gastric neoplasia and should be considered as a viable option for patients in North America. The risk of local recurrence is low and occurs exclusively after non-curative resection. Careful endoscopic surveillance is necessary to identify and treat metachronous lesions.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Gástricas , Ressecção Endoscópica de Mucosa/efeitos adversos , Mucosa Gástrica/cirurgia , Humanos , Recidiva Local de Neoplasia , Estudos Retrospectivos , Neoplasias Gástricas/cirurgia , Resultado do Tratamento
15.
ACS Nano ; 14(10): 12732-12748, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32931251

RESUMO

Bidirectional cell-cell communication involving exosome-borne cargo such as miRNA has emerged as a critical mechanism for wound healing. Unlike other shedding vesicles, exosomes selectively package miRNA by SUMOylation of heterogeneous nuclear ribonucleoproteinA2B1 (hnRNPA2B1). In this work, we elucidate the significance of exosome in keratinocyte-macrophage crosstalk following injury. Keratinocyte-derived exosomes were genetically labeled with GFP-reporter (Exoκ-GFP) using tissue nanotransfection (TNT), and they were isolated from dorsal murine skin and wound-edge tissue by affinity selection using magnetic beads. Surface N-glycans of Exoκ-GFP were also characterized. Unlike skin exosome, wound-edge Exoκ-GFP demonstrated characteristic N-glycan ions with abundance of low-base-pair RNA and was selectively engulfed by wound macrophages (ωmϕ) in granulation tissue. In vitro addition of wound-edge Exoκ-GFP to proinflammatory ωmϕ resulted in conversion to a proresolution phenotype. To selectively inhibit miRNA packaging within Exoκ-GFPin vivo, pH-responsive keratinocyte-targeted siRNA-hnRNPA2B1 functionalized lipid nanoparticles (TLNPκ) were designed with 94.3% encapsulation efficiency. Application of TLNPκ/si-hnRNPA2B1 to the murine dorsal wound-edge significantly inhibited expression of hnRNPA2B1 by 80% in epidermis compared to the TLNPκ/si-control group. Although no significant difference in wound closure or re-epithelialization was observed, the TLNPκ/si-hnRNPA2B1 treated group showed a significant increase in ωmϕ displaying proinflammatory markers in the granulation tissue at day 10 post-wounding compared to the TLNPκ/si-control group. Furthermore, TLNPκ/si-hnRNPA2B1 treated mice showed impaired barrier function with diminished expression of epithelial junctional proteins, lending credence to the notion that unresolved inflammation results in leaky skin. This work provides insight wherein Exoκ-GFP is recognized as a major contributor that regulates macrophage trafficking and epithelial barrier properties postinjury.


Assuntos
Exossomos , Animais , Queratinócitos , Macrófagos , Camundongos , Pele , Cicatrização
16.
FASEB J ; 34(9): 12847-12859, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744779

RESUMO

Mechanical stimulations can prevent bone loss, but their effects on the tumor-invaded bone or solid tumors are elusive. Here, we evaluated the effect of knee loading, dynamic loads applied to the knee, on metastasized bone and mammary tumors. In a mouse model, tumor cells were inoculated to the mammary fat pad or the proximal tibia. Daily knee loading was then applied and metabolic changes were monitored mainly through urine. Urine samples were also collected from human subjects before and after step aerobics. The result showed that knee loading inhibited tumor progression in the loaded tibia. Notably, it also reduced remotely the growth of mammary tumors. In the urine, an altered level of cholesterol was observed with an increase in calcitriol, which is synthesized from a cholesterol derivative. In urinary proteins, knee loading in mice and step aerobics in humans markedly reduced WNT1-inducible signaling pathway protein 1, WISP1, which leads to poor survival among patients with breast cancer. In the ex vivo breast cancer tissue assay, WISP1 promoted the growth of cancer fragments and upregulated tumor-promoting genes, such as Runx2, MMP9, and Snail. Collectively, the present preclinical and human study demonstrated that mechanical stimulations, such as knee loading and step aerobics, altered urinary metabolism and downregulated WISP1. The study supports the benefit of mechanical stimulations for locally and remotely suppressing tumor progression. It also indicated the role of WISP1 downregulation as a potential mechanism of loading-driven tumor suppression.


Assuntos
Neoplasias Ósseas/terapia , Neoplasias da Mama/terapia , Proteínas de Sinalização Intercelular CCN/metabolismo , Terapia por Exercício , Neoplasias Mamárias Experimentais/terapia , Condicionamento Físico Animal , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Proteínas de Sinalização Intercelular CCN/urina , Linhagem Celular Tumoral , Colesterol/urina , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/urina
17.
FASEB J ; 34(6): 7578-7592, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293076

RESUMO

While urine has been considered as a useful bio-fluid for health monitoring, its dynamic changes to physical activity are not well understood. We examined urine's possible antitumor capability in response to medium-level, loading-driven physical activity. Urine was collected from mice subjected to 5-minute skeletal loading and human individuals before and after 30-minute step aerobics. Six cancer cell lines (breast, prostate, and pancreas) and a mouse model of the mammary tumor were employed to evaluate the effect of urine. Compared to urine collected prior to loading, urine collected post-activity decreased the cellular viability, proliferation, migration, and invasion of tumor cells, as well as tumor weight in the mammary fat pad. Detection of urinary volatile organic compounds and ELISA assays showed that the loading-conditioned urine reduced cholesterol and elevated dopamine and melatonin. Immunohistochemical fluorescent images presented upregulation of the rate-limiting enzymes for the production of dopamine and melatonin in the brain. Molecular analysis revealed that the antitumor effect was linked to the reduction in molecular vinculin-linked molecular force as well as the downregulation of the Lrp5-CSF1-CD105 regulatory axis. Notably, the survival rate for the high expression levels of Lrp5, CSF1, and CD105 in tumor tissues was significantly lowered in the Cancer Genome Atlas database. Collectively, this study revealed that 5- or 10-minute loading-driven physical activity was sufficient to induce the striking antitumor effect by activating the neuronal signaling and repressing cholesterol synthesis. The result supported the dual role of loading-conditioned urine as a potential tumor suppressor and a source of diagnostic biomarkers.


Assuntos
Urina/fisiologia , Adolescente , Adulto , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Dopamina/urina , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Neoplasias Mamárias Animais/urina , Melatonina/urina , Camundongos , Camundongos Endogâmicos C57BL , Células PC-3 , Transdução de Sinais/fisiologia , Adulto Jovem
18.
J Proteome Res ; 19(5): 1913-1922, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227867

RESUMO

Urinary volatile terpene (VT) levels are significantly altered with induced models of breast cancer in mice. The question arises whether VTs can detect the efficacy of antitumor treatments. BALB/c mice were injected with 4T1.2 murine tumor cells in the mammary pad or iliac artery to model localized breast cancer and induced bone metastasis. The effect of two dopaminergic antitumor agents was tested by conventional histology and altered VT levels. The headspace of urine specimens was analyzed by gas chromatography-mass spectrometry. In the localized model, the statistical significance (p < 0.05) was identified for 26% of VTs, and in the metastasis model, 19% of VTs. The authors discovered separate VT panels classifying localized/control [area under the curve (AUC) = 1.0] and metastasis/control (AUC = 0.98). Treatment samples were tested using these panels, which showed that mice treated with either agent were statistically significantly different from cancer samples, which is consistent with conventional analysis.


Assuntos
Neoplasias , Compostos Orgânicos Voláteis , Animais , Cromatografia Gasosa-Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Microextração em Fase Sólida , Terpenos , Compostos Orgânicos Voláteis/análise
19.
Bone Res ; 8: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32128277

RESUMO

Osteocytes are mechanosensitive bone cells, but little is known about their effects on tumor cells in response to mechanical stimulation. We treated breast cancer cells with osteocyte-derived conditioned medium (CM) and fluid flow-treated conditioned medium (FFCM) with 0.25 Pa and 1 Pa shear stress. Notably, CM and FFCM at 0.25 Pa induced the mesenchymal-to-epithelial transition (MET), but FFCM at 1 Pa induced the epithelial-to-mesenchymal transition (EMT). This suggested that the effects of fluid flow on conditioned media depend on flow intensity. Fluorescence resonance energy transfer (FRET)-based evaluation of Src activity and vinculin molecular force showed that osteopontin was involved in EMT and MET switching. A mouse model of tumor-induced osteolysis was tested using dynamic tibia loadings of 1, 2, and 5 N. The low 1 N loading suppressed tumor-induced osteolysis, but this beneficial effect was lost and reversed with loads at 2 and 5 N, respectively. Changing the loading intensities in vivo also led to changes in serum TGFß levels and the composition of tumor-associated volatile organic compounds in the urine. Collectively, this study demonstrated the critical role of intensity-dependent mechanotransduction and osteopontin in tumor-osteocyte communication, indicating that a biophysical factor can tangibly alter the behaviors of tumor cells in the bone microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA