Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0321423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441467

RESUMO

The fattening of calves is often associated with high antimicrobial use and the selection of antimicrobial resistance (AMR). The objective of this observational longitudinal study was to describe the AMR and strain dynamics, using whole-genome sequencing (WGS), of fecal Escherichia coli in a cohort of 22 calves. All calves received antimicrobial group treatments on Day (D) 1 (oxytetracycline, intramuscularly) and on D4 through D12 (doxycycline, in-feed). Additionally, eight calves received individual parenteral treatments between D7 and D59, including florfenicol, amoxicillin, marbofloxacin, and gamithromycin. Rectal swabs were collected from all calves on D1 (prior to treatment), D2, D9, and D82. The swabs were spread onto Enterobacterales-selective agar, and three E. coli colonies per plate were subjected to WGS. Out of 264 isolates across all calves and sampling times, 80 unique strains were identified, a majority of which harbored genes conferring resistance to tetracyclines, streptomycin, and sulfonamides. The diversity of strains decreased during the in-feed antimicrobial group treatment of the calves. On D82, 90% of isolates were strains that were not isolated at previous sampling times, and the median number per strain of AMR determinants to tetracyclines, florfenicol, ß-lactams, quinolones, or macrolides decreased compared to D9. Additionally, clonal dissemination of some strains represented the main transmission route of AMR determinants. In this study, WGS revealed important variations in strain diversity and genotypic AMR of fecal E. coli over time in calves subjected to group antimicrobial treatments. IMPORTANCE: The continued emergence and spread of antimicrobial resistance (AMR) determinants are serious global concerns. The dynamics of AMR spread and persistence in bacterial and animal host populations are complex and not solely driven by antimicrobial selection pressure. In calf fattening, both antimicrobial use and carriage prevalence of antimicrobial-resistant bacteria are generally recognized as high. This study provides new insights into the short-term, within-farm dynamics and transmission of AMR determinants in Escherichia coli from the dominant fecal flora of calves subjected to antimicrobial group treatments during the rearing period. The diversity of E. coli strains decreased over time, although, in contrast to previous observations in extended-spectrum ß-lactamase-producing Enterobacterales, the predominance of a few clones was not observed. The spread of AMR determinants occurred through the dissemination of clonal strains among calves. The median number per strain of AMR determinants conferring resistance to selected antimicrobials decreased toward the end of the rearing period.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Tianfenicol , Animais , Bovinos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Estudos Longitudinais , Tetraciclinas/farmacologia , Tianfenicol/análogos & derivados
2.
Vet Res ; 55(1): 18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351086

RESUMO

Although cattle are the mammalian species with most global biomass associated with a huge impact on our planet, their immune system remains poorly understood. Notably, the bovine immune system has peculiarities such as an overrepresentation of γδ T cells that requires particular attention, specifically in an infectious context. In line of 3R principles, we developed an ex vivo platform to dissect host-pathogen interactions. The experimental design was based on two independent complementary readouts: firstly, a novel 12-14 color multiparameter flow cytometry assay measuring maturation (modulation of cell surface marker expression) and activation (intracellular cytokine detection) of monocytes, conventional and plasmacytoid dendritic cells, natural killer cells, γδ T cells, B and T cells; secondly, a multiplex immunoassay monitoring bovine chemokine and cytokine secretion levels. The experiments were conducted on fresh primary bovine blood cells exposed to Mycoplasmopsis bovis (M. bovis), a major bovine respiratory pathogen. Besides reaffirming the tight cooperation of the different primary blood cells, we also identified novel key players such as strong IFN-γ secreting NK cells, whose role was so far largely overlooked. Additionally, we compared the host-pathogen interactions at different temperatures, including commonly used 37 °C, ruminant body temperature (38-38.5 °C) and fever (≥ 39.5 °C). Strikingly, working under ruminant physiological temperature influenced the capacity of most immune cell subsets to respond to M. bovis compared to 37 °C. Under fever-like temperature conditions the immune response was impaired compared to physiological temperature. Our experimental approach, phenotypically delineating the bovine immune system provided a thorough vision of the immune response towards M. bovis and the influence of temperature towards that immune response.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Animais , Bovinos , Temperatura , Citocinas/metabolismo , Ativação Linfocitária , Ruminantes/metabolismo
3.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37950488

RESUMO

The aim of the present study was to estimate the chemical composition (water, lipid, protein, mineral, and energy contents) of carcasses measured postmortem using dual-energy X-ray absorptiometry (DXA) scans of cold half-carcass or 11th rib cut. One hundred and twenty beef-on-dairy (dam: Swiss Brown, sire: Angus, Limousin, or Simmental) bulls (n = 66), heifers (n = 42), and steers (n = 12) were included in the study. The reference carcass composition measured after grinding, homogenization, and chemical analyses was estimated from DXA variables using simple or multiple linear regressions with model training on 70% (n = 84) and validation on 30% (n = 36) of the observations. In the validation step, the estimates of water and protein masses from the half-carcass (R2 = 0.998 and 0.997; root mean square error of prediction [RMSEP], 1.0 and 0.5 kg, respectively) and 11th rib DXA scans (R2 = 0.997 and 0.996; RMSEP, 1.5 and 0.5 kg, respectively) were precise. Lipid mass was estimated precisely from the half-carcass DXA scan (R2 = 0.990; RMSEP = 1.0 kg) with a slightly lower precision from the 11th rib DXA scan (R2 = 0.968; RMSEP = 1.7 kg). Mineral mass was estimated from half-carcass (R²â€…= 0.975 and RMSEP = 0.3 kg) and 11th rib DXA scans (R2 = 0.947 and RMSEP = 0.4 kg). For the energy content, the R2 values ranged from 0.989 (11th rib DXA scan) to 0.996 (half-carcass DXA scan), and the RMSEP ranged from 36 (half-carcass) to 55 MJ (11th rib). The proportions of water, lipids, and energy in the carcasses were also precisely estimated (R2 ≥ 0.882) using either the half-carcass (RMSEP ≤ 1.0%) or 11th rib-cut DXA scans (RMSEP ≤ 1.3%). Precision was lower for the protein and mineral proportions (R2 ≤ 0.794, RMSEP ≤ 0.5%). The cattle category (sex and breed of sire) effect was observed only in some estimative models for proportions from the 11th rib cut. In conclusion, DXA imaging of either a cold half-carcass or 11th rib cut is a precise method for estimating the chemical composition of carcasses from beef-on-dairy cattle.


Assessment of the water, lipid, protein, mineral, and energy contents of beef carcass allows for an understanding of the bovine growth physiology and is key to determining the carcass's commercial value at the slaughterhouse. Direct measurement of the carcass chemical composition requires postmortem grinding and homogenization of a half-carcass to perform chemical analyses. This reference method is expensive, time-consuming, and destructive of edible meat. The aim of the present study was to develop an alternative and nondestructive method to determine carcass chemical composition based on image scans obtained using dual-energy X-ray absorptiometry (DXA). Equations were calibrated to estimate the carcass composition based on the DXA scans of a whole half-carcass or a single-rib cut in an accurate, precise, fast, and reproducible way. These were established for seven types of beef-on-dairy cattle of different sexes and breeds of sire, which are among the most commonly used in specialized beef-on-dairy fattening production systems worldwide.


Assuntos
Composição Corporal , Água , Bovinos , Animais , Masculino , Feminino , Absorciometria de Fóton/veterinária , Água/análise , Proteínas/análise , Lipídeos/análise , Costelas/diagnóstico por imagem , Minerais/análise , Carne/análise , Tecido Adiposo/química
4.
Transl Anim Sci ; 6(2): txac066, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35702177

RESUMO

The aim of present study was to compare in vivo and post mortem methods for estimating the empty body (EB) and carcass chemical compositions of Simmental lactating and growing cattle. Indirect methods were calibrated against the direct post mortem reference determination of chemical compositions of EB and carcass, determined after grinding and analyzing the water, lipid, protein, mineral masses, and energy content. The indirect methods applied to 12 lactating cows and 10 of their offspring were ultrasound (US), half-carcass and 11th rib dual-energy X-ray absorptiometry (DXA) scans, subcutaneous and perirenal adipose cell size (ACS), and dissection of the 11th rib. Additionally, three-dimensional (3D) images were captured for 8 cows. Multiple linear regressions with leave-one-out-cross-validations were tested between predictive variables derived from the methods tested, and the EB and carcass chemical compositions. Partial least square regressions were used to estimate body composition with morphological traits measured on 3D images. Body weight (BW) alone estimated the EB and carcass composition masses with a root mean squared error of prediction (RMSEP) for the EB from 1 kg for minerals to 12.4 kg for lipids, and for carcass from 0.9 kg for minerals to 7.8 kg for water. Subcutaneous adipose tissue thickness measured by US was the most accurate in vivo predictor when associated with BW to estimate chemical composition, with the EB lipid mass RMSEP = 11 kg and R 2 = 0.75; carcass water mass RMSEP = 6 kg and R 2 = 0.98; and carcass energy content RMSEP = 236 MJ and R 2 = 0.91. Post mortem, carcass lipid mass was best estimated by half-carcass DXA scan (RMSEP = 2 kg, R 2 = 0.98), 11th rib DXA scan (RMSEP = 3 kg, R 2 = 0.96), 11th rib dissection (RMSEP = 4 kg, R 2 = 0.92), and perirenal ACS (RMSEP = 6 kg, R 2 = 0.79) in this respective order. The results obtained by 11th rib DXA scan were accurate and close to the half-carcass DXA scan with a reduction in scan time. Morphological traits from 3D images delivered promising estimations of the cow EB and carcass chemical component masses with an error less than 13 kg for the EB lipid mass and than 740 MJ for the EB energy. Future research is required to test the 3D imaging method on a larger number of animals to confirm and quantify its interest in estimating body composition in living animals.

5.
Chemosphere ; 296: 133951, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35157889

RESUMO

Polychlorinated biphenyls (PCBs) and dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) are bioaccumulative pollutants that endanger bovine food safety. Bioaccumulation depends, among others, on the physiological dynamics of the cow's reproductive cycle. However, recent studies have focused only on near steady-state situations. Thus, the effects of animal physiology on PCB + PCDD/F transfer from grass silage and soil to cows' blood, adipose tissue, and milk and subsequently to suckling calves during gestation and lactation were investigated. In the exposed group, nine cows ate a grass silage/contaminated soil mixture (6.6 ± 0.8 µg iPCBs and 2.6 ± 0.4 ng dlPCB + PCDD/F TEQ kgDM-1) for 109 days prepartum until 288 days in milk (DIM). Four of these cows underwent decontamination after DIM164, receiving the same clean grass silage as the four control cows during the experiment. Calves were fed the milk of their respective mothers. In the exposed group, transgenerational bioaccumulation occurred until DIM164, with calf blood and adipose tissue PCB + PCDD/F concentrations reaching levels twice as high as those in their respective mothers. Transfer rates from oral intake to milk ranged from 0.1 up to 42%, depending on pollutant congener, dietary treatment, and reproductive parity of the cow. Congener and parity also influenced the decontamination half-lives of milk. In decontaminated calves, declines in adipose tissue PCB + PCDD/F concentrations coincided with increases in body fat mass. Therefore, it is essential to know the physiological characteristics of cattle, exposure dose and duration, and physicochemical compound properties to perform reliable transfer assessments.


Assuntos
Benzofuranos , Poluentes Ambientais , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animais , Benzofuranos/análise , Bovinos , Descontaminação , Dibenzofuranos , Dibenzofuranos Policlorados , Poluentes Ambientais/análise , Feminino , Cinética , Poaceae , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Gravidez , Silagem , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA