Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Commun ; 15(1): 2921, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609362

RESUMO

The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.


Assuntos
Antílopes , Animais , Antílopes/genética , Ecossistema , África Oriental , África Austral , Efeitos Antropogênicos
2.
Curr Biol ; 34(7): 1576-1586.e5, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479386

RESUMO

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Assuntos
Girafas , Animais , Girafas/genética , Ruminantes/genética , Evolução Biológica , Filogenia , Deriva Genética
3.
Nat Commun ; 15(1): 172, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172616

RESUMO

Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.


Assuntos
Mamíferos , Humanos , Animais , Suínos , Madagáscar , Filogenia , Porosidade , Filogeografia , Mamíferos/genética
4.
Mol Ecol ; 32(8): 1860-1874, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651275

RESUMO

The iconic Cape buffalo has experienced several documented population declines in recent history. These declines have been largely attributed to the late 19th century rinderpest pandemic. However, the effect of the rinderpest pandemic on their genetic diversity remains contentious, and other factors that have potentially affected this diversity include environmental changes during the Pleistocene, range expansions and recent human activity. Motivated by this, we present analyses of whole genome sequencing data from 59 individuals from across the Cape buffalo range to assess present-day levels of genome-wide genetic diversity and what factors have influenced these levels. We found that the Cape buffalo has high average heterozygosity overall (0.40%), with the two southernmost populations having significantly lower heterozygosity levels (0.33% and 0.29%) on par with that of the domesticated water buffalo (0.29%). Interestingly, we found that these lower levels are probably due to recent inbreeding (average fraction of runs of homozygosity 23.7% and 19.9%) rather than factors further back in time during the Pleistocene. Moreover, detailed investigations of recent demographic history show that events across the past three centuries were the main drivers of the exceptional loss of genetic diversity in the southernmost populations, coincident with the onset of colonialism in the southern extreme of the Cape buffalo range. Hence, our results add to the growing body of studies suggesting that multiple recent human-mediated impacts during the colonial period caused massive losses of large mammal abundance in southern Africa.


Assuntos
Genética Populacional , Peste Bovina , Animais , Humanos , África do Sul , Variação Genética , Búfalos/genética , Colonialismo
5.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35779009

RESUMO

African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000-1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region's importance in African biogeography. We found that immune system-related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.


Assuntos
Resistência à Doença , Doenças dos Suínos , África , África Oriental , Animais , Sequência de Bases , Resistência à Doença/genética , Suínos
6.
Mol Ecol ; 31(10): 2968-2984, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305042

RESUMO

The evolutionary history of African ungulates has been explained largely in the light of Pleistocene climatic oscillations and the way these influenced the distribution of vegetation types, leading to range expansions and/or isolation in refugia. In contrast, comparatively fewer studies have addressed the continent's environmental heterogeneity and the role played by its geomorphological barriers. In this study, we performed a range-wide analysis of complete mitogenomes of sable antelope (Hippotragus niger) to explore how these different factors may have contributed as drivers of evolution in southcentral Africa. Our results supported two sympatric and deeply divergent mitochondrial lineages in west Tanzanian sables, which can be explained as the result of introgressive hybridization of a mitochondrial ghost lineage from an archaic, as-yet-undefined, congener. Phylogeographical subdivisions into three main lineages suggest that sable diversification may not have been driven solely by climatic events affecting populations differently across a continental scale. Often in interplay with climate, geomorphological features have also clearly shaped the species' patterns of vicariance, where the East Africa Rift System and the Eastern Arc Mountains acted as geological barriers. Subsequent splits among southern populations may be linked to rearrangements in the Zambezi system, possibly framing the most recent time when the river attained its current drainage profile. This work underlines how the use of comprehensive mitogenomic data sets on a model species with a wide geographical distribution can contribute to a much-enhanced understanding of environmental, geomorphological and evolutionary patterns in Africa throughout the Quaternary.


Assuntos
Antílopes , Mustelidae , Animais , Antílopes/genética , DNA Mitocondrial/genética , Variação Genética/genética , Filogenia , Filogeografia
7.
Front Genet ; 13: 1021004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712847

RESUMO

Non-invasive biological samples benefit studies that investigate rare, elusive, endangered, or dangerous species. Integrating genomic techniques that use non-invasive biological sampling with advances in computational approaches can benefit and inform wildlife conservation and management. Here, we used non-invasive fecal DNA samples to generate low- to medium-coverage genomes (e.g., >90% of the complete nuclear genome at six X-fold coverage) and metagenomic sequences, combining widely available and accessible DNA collection cards with commonly used DNA extraction and library building approaches. DNA preservation cards are easy to transport and can be stored non-refrigerated, avoiding cumbersome or costly sample methods. The genomic library construction and shotgun sequencing approach did not require enrichment or targeted DNA amplification. The utility and potential of the data generated was demonstrated through genome scale and metagenomic analyses of zoo and free-ranging African savanna elephants (Loxodonta africana). Fecal samples collected from free-ranging individuals contained an average of 12.41% (5.54-21.65%) endogenous elephant DNA. Clustering of these elephants with others from the same geographic region was demonstrated by a principal component analysis of genetic variation using nuclear genome-wide SNPs. Metagenomic analyses identified taxa that included Loxodonta, green plants, fungi, arthropods, bacteria, viruses and archaea, showcasing the utility of this approach for addressing complementary questions based on host-associated DNA, e.g., pathogen and parasite identification. The molecular and bioinformatic analyses presented here contributes towards the expansion and application of genomic techniques to conservation science and practice.

8.
BMC Genomics ; 22(1): 735, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635054

RESUMO

BACKGROUND: Numerous Ebola virus outbreaks have occurred in Equatorial Africa over the past decades. Besides human fatalities, gorillas and chimpanzees have also succumbed to the fatal virus. The 2004 outbreak at the Odzala-Kokoua National Park (Republic of Congo) alone caused a severe decline in the resident western lowland gorilla (Gorilla gorilla gorilla) population, with a 95% mortality rate. Here, we explore the immediate genetic impact of the Ebola outbreak in the western lowland gorilla population. RESULTS: Associations with survivorship were evaluated by utilizing DNA obtained from fecal samples from 16 gorilla individuals declared missing after the outbreak (non-survivors) and 15 individuals observed before and after the epidemic (survivors). We used a target enrichment approach to capture the sequences of 123 genes previously associated with immunology and Ebola virus resistance and additionally analyzed the gut microbiome which could influence the survival after an infection. Our results indicate no changes in the population genetic diversity before and after the Ebola outbreak, and no significant differences in microbial community composition between survivors and non-survivors. However, and despite the low power for an association analysis, we do detect six nominally significant missense mutations in four genes that might be candidate variants associated with an increased chance of survival. CONCLUSION: This study offers the first insight to the genetics of a wild great ape population before and after an Ebola outbreak using target capture experiments from fecal samples, and presents a list of candidate loci that may have facilitated their survival.


Assuntos
Microbioma Gastrointestinal , Doença pelo Vírus Ebola , Animais , Surtos de Doenças , Gorilla gorilla/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/veterinária , Humanos , Pan troglodytes
9.
Curr Biol ; 31(9): 1862-1871.e5, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33636121

RESUMO

Large carnivores are generally sensitive to ecosystem changes because their specialized diet and position at the top of the trophic pyramid is associated with small population sizes. Accordingly, low genetic diversity at the whole-genome level has been reported for all big cat species, including the widely distributed leopard. However, all previous whole-genome analyses of leopards are based on the Far Eastern Amur leopards that live at the extremity of the species' distribution and therefore are not necessarily representative of the whole species. We sequenced 53 whole genomes of African leopards. Strikingly, we found that the genomic diversity in the African leopard is 2- to 5-fold higher than in other big cats, including the Amur leopard, likely because of an exceptionally high effective population size maintained by the African leopard throughout the Pleistocene. Furthermore, we detected ongoing gene flow and very low population differentiation within African leopards compared with those of other big cats. We corroborated this by showing a complete absence of an otherwise ubiquitous equatorial forest barrier to gene flow. This sets the leopard apart from most other widely distributed large African mammals, including lions. These results revise our understanding of trophic sensitivity and highlight the remarkable resilience of the African leopard, likely because of its extraordinary habitat versatility and broad dietary niche.


Assuntos
Ecossistema , Variação Genética , Panthera/anatomia & histologia , Panthera/genética , África , Animais , Feminino , Fluxo Gênico , Masculino , Panthera/classificação , Densidade Demográfica
10.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33604669

RESUMO

Roan antelope (Hippotragus equinus) is the second-largest member of the Hippotraginae (Bovidae), and is widely distributed across sub-Saharan mesic woodlands. Despite being listed as "Least Concern" across its African range, population numbers are decreasing with many regional Red List statuses varying between Endangered and Locally Extinct. Although the roan antelope has become an economically-important game species in Southern Africa, the vast majority of wild populations are found only in fragmented protected areas, which is of conservation concern. Genomic information is crucial in devising optimal management plans. To this end, we report here the first de novo assembly and annotation of the whole-genome sequence of a male roan antelope from a captive-breeding program. Additionally, we uncover single-nucleotide variants (SNVs) through re-sequencing of five wild individuals representing five of the six described subspecies. We used 10X Genomics Chromium chemistry to produce a draft genome of 2.56 Gb consisting of 16,880 scaffolds with N50 = 8.42 Mb and a BUSCO completeness of 91.2%. The draft roan genome includes 1.1 Gbp (42.2%) repetitive sequences. De novo annotation identified 20,518 protein-coding genes. Genome synteny to the domestic cow showed an average identity of 92.7%. Re-sequencing of five wild individuals to an average sequencing depth of 9.8x resulted in the identification of a filtered set of 3.4x106 bi-allelic SNVs. The proportion of alternative homozygous SNVs for the individuals representing different subspecies, as well as differentiation as measured by PCA, were consistent with expected divergence from the reference genome and among samples. The roan antelope genome is a valuable resource for evolutionary and population genomic questions, as well as management and conservation actions.


Assuntos
Antílopes , África do Norte , Animais , Antílopes/genética , Evolução Biológica , Genoma , Genômica , Masculino , Anotação de Sequência Molecular
11.
Nat Ecol Evol ; 2(3): 491-498, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358610

RESUMO

The plains zebra (Equus quagga) is an ecologically important species of the African savannah. It is also one of the most numerous and widely distributed ungulates, and six subspecies have been described based on morphological variation. However, the within-species evolutionary processes have been difficult to resolve due to its high mobility and a lack of consensus regarding the population structure. We obtained genome-wide DNA polymorphism data from more than 167,000 loci for 59 plains zebras from across the species range, encompassing all recognized extant subspecies, as well as three mountain zebras (Equus zebra) and three Grevy's zebras (Equus grevyi). Surprisingly, the population genetic structure does not mirror the morphology-based subspecies delineation, underlining the dangers of basing management units exclusively on morphological variation. We use demographic modelling to provide insights into the past phylogeography of the species. The results identify a southern African location as the most likely source region from which all extant populations expanded around 370,000 years ago. We show evidence for inclusion of the extinct and phenotypically divergent quagga (Equus quagga quagga) in the plains zebra variation and reveal that it was less divergent from the other subspecies than the northernmost (Ugandan) extant population.


Assuntos
Equidae/genética , Polimorfismo Genético , África , Animais , DNA/análise , Equidae/classificação , Filogenia
12.
Sci Rep ; 7: 41417, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176810

RESUMO

The black rhinoceros is again on the verge of extinction due to unsustainable poaching in its native range. Despite a wide historic distribution, the black rhinoceros was traditionally thought of as depauperate in genetic variation, and with very little known about its evolutionary history. This knowledge gap has hampered conservation efforts because hunting has dramatically reduced the species' once continuous distribution, leaving five surviving gene pools of unknown genetic affinity. Here we examined the range-wide genetic structure of historic and modern populations using the largest and most geographically representative sample of black rhinoceroses ever assembled. Using both mitochondrial and nuclear datasets, we described a staggering loss of 69% of the species' mitochondrial genetic variation, including the most ancestral lineages that are now absent from modern populations. Genetically unique populations in countries such as Nigeria, Cameroon, Chad, Eritrea, Ethiopia, Somalia, Mozambique, Malawi and Angola no longer exist. We found that the historic range of the West African subspecies (D. b. longipes), declared extinct in 2011, extends into southern Kenya, where a handful of individuals survive in the Masai Mara. We also identify conservation units that will help maintain evolutionary potential. Our results suggest a complete re-evaluation of current conservation management paradigms for the black rhinoceros.


Assuntos
Evolução Biológica , Conservação dos Recursos Naturais , Perissodáctilos/genética , África Subsaariana , Animais , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Variação Genética , Haplótipos/genética , Repetições de Microssatélites/genética , Mitocôndrias/genética , Filogenia , Especificidade da Espécie
13.
Genetics ; 205(2): 787-801, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27903613

RESUMO

The genetic consequences of population bottlenecks on patterns of deleterious genetic variation in human populations are of tremendous interest. Based on exome sequencing of 18 Greenlandic Inuit we show that the Inuit have undergone a severe ∼20,000-year-long bottleneck. This has led to a markedly more extreme distribution of allele frequencies than seen for any other human population tested to date, making the Inuit the perfect population for investigating the effect of a bottleneck on patterns of deleterious variation. When comparing proxies for genetic load that assume an additive effect of deleterious alleles, the Inuit show, at most, a slight increase in load compared to European, East Asian, and African populations. Specifically, we observe <4% increase in the number of derived deleterious alleles in the Inuit. In contrast, proxies for genetic load under a recessive model suggest that the Inuit have a significantly higher load (20% increase or more) compared to other less bottlenecked human populations. Forward simulations under realistic models of demography support our empirical findings, showing up to a 6% increase in the genetic load for the Inuit population across all models of dominance. Further, the Inuit population carries fewer deleterious variants than other human populations, but those that are present tend to be at higher frequency than in other populations. Overall, our results show how recent demographic history has affected patterns of deleterious variants in human populations.


Assuntos
Carga Genética , Migração Humana , Inuíte/genética , Polimorfismo de Nucleotídeo Único , Evolução Molecular , Exoma , Frequência do Gene , Groenlândia , Humanos
14.
Science ; 354(6311): 477-481, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27789843

RESUMO

Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor of geographic origin at country and regional scales. Multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of central and eastern chimpanzees between 200,000 and 550,000 years ago, probably with subsequent spread into Nigeria-Cameroon chimpanzees. Together with another, possibly more recent contact (after 200,000 years ago), bonobos contributed less than 1% to the central chimpanzee genomes. Admixture thus appears to have been widespread during hominid evolution.


Assuntos
Evolução Molecular , Variação Genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Camarões , Fluxo Gênico , Genoma , Genômica , Haplótipos , Nigéria , População
15.
PLoS One ; 10(12): e0143605, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26630483

RESUMO

With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined.


Assuntos
Evolução Molecular , Vírus da Febre Aftosa/genética , África/epidemiologia , Animais , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/isolamento & purificação , Modelos Genéticos , Filogenia , RNA Viral/genética , Recombinação Genética , Seleção Genética , Alinhamento de Sequência , Sorotipagem , Fatores de Tempo
16.
Genome Biol Evol ; 7(4): 1122-32, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25829516

RESUMO

We study genome-wide nucleotide diversity in three subspecies of extant chimpanzees using exome capture. After strict filtering, Single Nucleotide Polymorphisms and indels were called and genotyped for greater than 50% of exons at a mean coverage of 35× per individual. Central chimpanzees (Pan troglodytes troglodytes) are the most polymorphic (nucleotide diversity, θw = 0.0023 per site) followed by Eastern (P. t. schweinfurthii) chimpanzees (θw = 0.0016) and Western (P. t. verus) chimpanzees (θw = 0.0008). A demographic scenario of divergence without gene flow fits the patterns of autosomal synonymous nucleotide diversity well except for a signal of recent gene flow from Western into Eastern chimpanzees. The striking contrast in X-linked versus autosomal polymorphism and divergence previously reported in Central chimpanzees is also found in Eastern and Western chimpanzees. We show that the direction of selection statistic exhibits a strong nonmonotonic relationship with the strength of purifying selection S, making it inappropriate for estimating S. We instead use counts in synonymous versus nonsynonymous frequency classes to infer the distribution of S coefficients acting on nonsynonymous mutations in each subspecies. The strength of purifying selection we infer is congruent with the differences in effective sizes of each subspecies: Central chimpanzees are undergoing the strongest purifying selection followed by Eastern and Western chimpanzees. Coding indels show stronger selection against indels changing the reading frame than observed in human populations.


Assuntos
Pan troglodytes/genética , Seleção Genética , Animais , Demografia , Exoma , Éxons , Aptidão Genética , Genômica , Humanos , Mutação INDEL , Pan troglodytes/classificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
17.
Science ; 348(6231): 242-245, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25859046

RESUMO

Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival.


Assuntos
Variação Genética , Genoma , Gorilla gorilla/genética , Endogamia , Adaptação Fisiológica , Animais , Evolução Biológica , Variações do Número de Cópias de DNA , República Democrática do Congo , Espécies em Perigo de Extinção , Feminino , Gorilla gorilla/classificação , Gorilla gorilla/fisiologia , Homozigoto , Desequilíbrio de Ligação , Masculino , Mutação , Dinâmica Populacional , Ruanda , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
18.
Mol Ecol ; 24(10): 2507-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25827243

RESUMO

Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.


Assuntos
Evolução Molecular , Fluxo Gênico , Genética Populacional , Mamíferos/genética , África , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Haplótipos , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Dinâmica Populacional , Análise de Sequência de DNA
19.
PLoS One ; 10(2): e0114811, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25664876

RESUMO

To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda's cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012-2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45, 30 and 45 of these 61 seropositive samples, respectively. Virus neutralisation tests detected the highest levels of neutralising antibodies (titres ≥ 45) against serotype O in the herds from Kween and Rakai districts, against SAT 1 in the herd from Nwoya district and against SAT 2 in the herds from Kiruhura, Isingiro and Ntungamo districts. The isolation of a SAT 2 FMDV from Isingiro was consistent with the detection of high levels of neutralising antibodies against SAT 2; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A, SAT 1 and SAT 2. Therefore, to enhance the control of FMD in Uganda, there is need for efficient and timely determination of outbreak virus strains/serotypes and vaccine matching. The value of incorporating serotype A antigen into the imported vaccines along with the current serotype O, SAT 1 and SAT 2 strains should be considered.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Surtos de Doenças/veterinária , Vírus da Febre Aftosa/genética , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Sequência de Aminoácidos , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Febre Aftosa/classificação , Dados de Sequência Molecular , Testes de Neutralização/veterinária , Filogenia , RNA Viral , Sorogrupo , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA