Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Chem Sci ; 14(36): 9651-9663, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736640

RESUMO

Iron(ii) spin cross-over (SCO) compounds combine a thermally driven transition from the diamagnetic low-spin (LS) state to the paramagnetic high-spin (HS) state with a distinct change in the crystal lattice volume. Inversely, if the crystal lattice volume was modulated post-synthetically, the spin state of the compound could be tunable, resulting in the inverse effect for SCO. Herein, we demonstrate such a spin-state tuning in a breathing cyanido-bridged porous coordination polymer (PCP), where the volume change resulting from guest-induced gate-opening and -closing directly affects its spin state. We report the synthesis of a three-dimensional coordination framework {[FeII(4-CNpy)4]2[WIV(CN)8]·4H2O}n (1·4H2O; 4-CNpy = 4-cyanopyridine), which demonstrates a SCO phenomenon characterized by strong elastic frustration. This leads to a 48 K wide hysteresis loop above 140 K, but below this temperature results in a very gradual and incomplete SCO transition. 1·4H2O was activated under mild conditions, producing the nonporous {[FeII(4-CNpy)4]2[WIV(CN)8]}n (1) via a single-crystal-to-single-crystal process involving a 7.3% volume decrease, which shows complete and nonhysteretic SCO at T1/2 = 93 K. The low-temperature photoswitching behavior in 1 and 1·4H2O manifested the characteristic elasticity of the frameworks; 1 can be quantitatively converted into a metastable HS state after 638 nm light irradiation, while the photoactivation of 1·4H2O is only partial. Furthermore, nonporous 1 adsorbed CO2 molecules in a gated process, leading to {[FeII(4-CNpy)4]2[WIV(CN)8]·4CO2}n (1·4CO2), which resulted in a 15% volume increase and stabilization of the HS state in the whole temperature range down to 2 K. The demonstrated post-synthetic guest-exchange employing common gases is an efficient approach for tuning the spin state in breathing SCO-PCPs.

2.
Inorg Chem ; 62(18): 7032-7044, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120844

RESUMO

Polynuclear molecular clusters offer an opportunity to design new hierarchical switchable materials with collective properties, based on variation of the chemical composition, size, shapes, and overall building blocks organization. In this study, we rationally designed and constructed an unprecedented series of cyanido-bridged nanoclusters realizing new undecanuclear topology: FeII[FeII(bzbpen)]6[WV(CN)8]2[WIV(CN)8]2·18MeOH (1), NaI[CoII(bzbpen)]6[WV(CN)8]3[WIV(CN)8]·28MeOH (2), NaI[NiII(bzbpen)]6[WV(CN)8]3[WIV(CN)8]·27MeOH (3), and CoII[CoII(R/S-pabh)2]6[WV(CN)8]2[WIV(CN)8]2·26MeOH [4R and 4S; bzbpen = N1,N2-dibenzyl-N1,N2-bis(pyridin-2-ylmethyl)ethane-1,2-diamine; R/S-pabh = (R/S)-N-(1-naphthyl)-1-(pyridin-2-yl)methanimine], of size up to 11 nm3, ca. 2.0 × 2.2 × 2.5 nm (1-3) and ca. 1.4 × 2.5 × 2.5 nm (4). 1, 2, and 4 exhibit site selectivity for the spin states and spin transition related to the structural speciation based on subtle exogenous and endogenous effects imposed on similar but distinguishable 3d metal-ion-coordination moieties. 1 exhibits a mid-temperature-range spin-crossover (SCO) behavior that is more advanced than the previously reported SCO clusters based on octacyanidometallates and an onset of SCO behavior close to room temperature. The latter feature is also present in 2 and 4, which suggests the emergence of CoII-centered SCO not observed in previous bimetallic cyanido-bridged CoII-WV/IV systems. In addition, reversible switching of the SCO behavior in 1 via a single-crystal-to-single-crystal transformation during desolvation was also documented.

3.
Inorg Chem ; 62(4): 1611-1627, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36656797

RESUMO

We report an effective strategy toward tunable room-temperature multicolor to white-light emission realized by mixing three different lanthanide ions (Sm3+, Tb3+, and Ce3+) in three-dimensional (3D) coordination frameworks based on hexacyanidoruthenate(II) metalloligands. Mono-lanthanide compounds, K{LnIII(H2O)n[RuII(CN)6]}·mH2O (1, Ln = La, n = 3, m = 1.2; 2, Ln = Ce, n = 3, m = 1.3; 3, Ln = Sm, n = 2, m = 2.4; 4, Ln = Tb, n = 2, m = 2.4) are 3D cyanido-bridged networks based on the Ln-NC-Ru linkages, with cavities occupied by K+ ions and water molecules. They crystallize differently for larger (1, 2) and smaller (3, 4) lanthanides, in the hexagonal P63/m or the orthorhombic Cmcm space groups, respectively. All exhibit luminescence under the UV excitation, including weak blue emission in 1 due to the d-d 3T1g → 1A1g electronic transition of RuII, as well as much stronger blue emission in 2 related to the d-f 2D3/2 → 2F5/2,7/2 transitions of CeIII, red emission in 3 due to the f-f 4G5/2 → 6H5/2,7/2,9/2,11/2 transitions of SmIII, and green emission in 4 related to the f-f 5D4 → 7F6,5,4,3 transitions of TbIII. The lanthanide emissions, especially those of SmIII, take advantage of the RuII-to-LnIII energy transfer. The CeIII and TbIII emissions are also supported by the excitation of the d-f electronic states. Exploring emission features of the LnIII-RuII networks, two series of heterobi-lanthanide systems, K{SmxCe1-x(H2O)n[Ru(CN)6]}·mH2O (x = 0.47, 0.88, 0.88, 0.99, 0.998; 5-9) and K{TbxCe1-x(H2O)n[Ru(CN)6]}·mH2O (x = 0.56, 0.65, 0.93, 0.99, 0.997; 10-14) were prepared. They exhibit the composition- and excitation-dependent tuning of emission from blue to red and blue to green, respectively. Finally, the heterotri-lanthanide system of the K{Sm0.4Tb0.599Ce0.001(H2O)2[Ru(CN)6]}·2.5H2O (15) composition shows the rich emission spectrum consisting of the peaks related to CeIII, TbIII, and SmIII centers, which gives the emission color tuning from blue to orange and white-light emission of the CIE 1931 xy parameters of 0.325, 0.333.

4.
Dalton Trans ; 51(22): 8885-8892, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635098

RESUMO

Three new hybrid organic-inorganic frameworks employing octacyanidometallates and 4,4'-bypiridine dioxide (4,4'-bpdo) as bridging molecules were prepared and characterized. The three-dimensional coordination frameworks {[FeII(µ-4,4'-bpdo)(H2O)2]2[MIV(CN)8]·9H2O}n (Fe2Mo, Fe2W and Fe2Nb; M = Mo, W and Nb) are composed of cyanido-bridged chains, which are interconnected by the organic linkers. Magnetic measurements for Fe2Nb show a two-step transition to the antiferromagnetic state, which results from the cooperation of antiferromagnetic intra- and inter-chain interactions. Fe2Mo and Fe2W, on the other hand, behave as paramagnets at 2 K because of the diamagnetic character of the corresponding octacyanidometallate(IV) building units. However, after 450 nm light irradiation they show transition to the metastable high spin MoIV or WIV states, respectively, with distinct ferromagnetic intrachain spin interactions, as opposed to the antiferromagnetic ones observed in the Fe2Nb framework.

5.
J Phys Chem Lett ; 12(43): 10558-10566, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34694818

RESUMO

The ab initio calculations were correlated with magnetic and emission characteristics to understand the modulation of properties of NIR-emissive [YbIII(2,2'-bipyridine-1,1'-dioxide)4]3+ single-molecule magnets by cyanido/thiocyanidometallate counterions, [AgI(CN)2]- (1), [AuI(SCN)2]- (2), [CdII(CN)4]2-/[CdII2(CN)7]3- (3), and [MIII(CN)6]3- [MIII = Co (4), Ir (5), Fe (6), Cr (7)]. Theoretical studies indicate easy-axis-type ground doublets for all YbIII centers. They differ in the magnetic axiality; however, transversal g-tensor components are always large enough to explain the lack of zero-dc-field relaxation. The excited doublets lie more than 120 cm-1 above the ground one for all YbIII centers. It was confirmed by high-resolution emission spectra reproduced from the ab initio calculations that give reliable insight into energies and oscillator strengths of optical transitions. These findings indicate the dominance of Raman relaxation with the power n varying from 2.93(4) to 6.9(2) in the 4-3-5-1-2 series. This trend partially follows the magnetic axiality, being deeper correlated with the phonon modes schemes of (thio)cyanido matrices.

6.
ChemSusChem ; 14(18): 3887-3894, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289248

RESUMO

Solution-based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid-state mechano- and slow-chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent-free solid-state versus liquid-phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6 F5 )2 Zn, and 2,2,6,6-tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent-free solid-state processes. In a toluene solution two distinct paramagnetic Lewis acid-base adducts (C6 F5 )2 Zn(η1 -TEMPO) (1) and (C6 F5 )2 Zn(η1 -TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid-state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non-redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak-to-moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules.

7.
Dalton Trans ; 50(15): 5251-5261, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881078

RESUMO

Two mononuclear complexes [Ni(dapsc)(H2O)2]Cl(NO3)·H2O (1) and [Ni(dapsc)(NCS)2] (2), and a bimetallic CN-bridged trinuclear molecule [NiII(dapsc)(H2O)]2[WIV(CN)8]·11H2O (3) (dapsc = 2,6-diacetylpyridine-bis(semicarbazone)) were synthesised and characterised in terms of structure and magnetic properties. All three compounds contain Ni(ii) ions in a pentagonal bipyramid coordination geometry afforded by the equatorial pentadentate ligand (dapsc) and two O- or N-donating axial ligands. The compounds differ in the relative arrangement of the complexes, intermolecular interactions and distortion from the ideal coordination geometry. The high-field EPR and magnetometric studies show large anisotropy of the Ni(ii) centres with the D parameters in the range of -10.5 to -21.2 cm-1 and negligible antiferromagnetic interactions. The easy-axis magnetic anisotropies of 1-3 were reproduced by ab initio CASSCF/NEVPT2 calculations. The ground states consist mainly of the |MS = |±1 states, which is consistent with the fact that no out-of-phase signal can be detected in the AC magnetic susceptibility measurements.

8.
Angew Chem Int Ed Engl ; 60(5): 2330-2338, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124080

RESUMO

Bistable and stimuli-responsive molecule-based materials are promising candidates for the development of molecular switches and sensors for future technologies. The CN-bridged {NH4 [Ni(cyclam)][Fe(CN)6 ]⋅5 H2 O}n chain exists in two valence states: NiII -FeIII (1HT ) and NiIII -FeII (1LT ) and shows unique multiresponsivity under ambient conditions to various stimuli, including temperature, pressure, light, and humidity, which generate measurable response in the form of significant changes in magnetic susceptibility and color. The electron-transfer phase transition 1LT ↔1HT shows room-temperature thermal hysteresis, can be induced by irradiation, and shows high sensitivity to small applied pressure, which shifts it to higher temperatures. Additionally, it can be reversibly turned off by dehydration to the {NH4 [NiII (cyclam)][FeIII (CN)6 ]}n (1 d) phase, which features the NiII -FeIII valence state over the whole temperature range, but responds to pressure by yielding NiIII -FeII above 1.06 GPa.

9.
Dalton Trans ; 49(47): 17321-17330, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33206068

RESUMO

A series of crystalline phases composed of trimetallic 3d-5d-5d' {Fe9[Re(CN)8]6-x[W(CN)8]x(MeOH)24}·yMeOH (x = 1 (1), 2 (2), 3 (3), 4 (4) and 5 (5); y = 10-15) clusters were obtained by altering the octacyanidometalate composition. The temperature dependent studies involving SC XRD, SQUID magnetic measurements, IR spectroscopy and 57Fe Mössbauer spectroscopy revealed reversible phase transition with the retention of single crystal character in each congener. The transition was assisted by reversible spin-crossover (SCO) HSFeII↔LSFeII transition at the central Fe1(ii) site for Fe9Re5W1 (1), Fe9Re4W2 (2), Fe9Re3W3 (3) and Fe9Re2W4 (4). In contrast, the tungsten-rich congener Fe9Re1W5 (5) exhibited nontrivial behavior with the SCO transition being stopped halfway through the cooling process, to be completed with single electron transfer (ET) from the external Fe2(ii) center towards one of the neighboring W(v) sites. The critical temperature Tc of SCO has been systematically increased from 193 K (1) to 247 K (4). All experimental data indicate the domination of the Fe(ii)-W(v) valence states in all crystals 1-5, however, with increasing quantity of [W(CN)8]3- (and decreasing quantity of [Re(CN)8]3-), the valence equilibrium Fe(ii)-W(v) ↔ Fe(iii)-W(iv) was systematically shifted to the right, starting from congener 3. The overall electronic configuration at low temperatures and variable amounts and location of spin carriers along the whole series suggest the remarkable competition between magnetic super-exchange Fe(ii)-CN-W(v) interactions and intermolecular interactions. The observed behavior is in line with the information collected previously for the bimetallic congeners Fe9Re6 and Fe9W6, to shed light on the role of the mixed tri-metallic composition in changing the properties observed for the relevant bimetallic cyanido-bridged skeletons.

10.
Chem Soc Rev ; 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32685956

RESUMO

Octacyanidometallates have been successfully employed in the design of heterometallic coordination systems offering a spectacular range of desired physical properties with great potential for technological applications. The [M(CN)8]n- ions comprise a series of complexes of heavy transition metals in high oxidation states, including NbIV, MoIV/V, WIV/V, and ReV. Since the discovery of the pioneering bimetallic {MnII4[MIV(CN)8]2} and {MnII9[MV(CN)8]6} (M = Mo, W) molecules in 2000, octacyanidometallates were fruitfully explored as precursors for the construction of diverse d-d or d-f coordination clusters and frameworks which could be obtained in the crystalline form under mild synthetic conditions. The primary interest in [M(CN)8]n--based networks was focused on their application as molecule-based magnets exhibiting long-range magnetic ordering resulting from the efficient intermetallic exchange coupling mediated by cyanido bridges. However, in the last few years, octacyanidometallate-based materials proved to offer varied and remarkable functionalities, becoming efficient building blocks for the construction of molecular nanomagnets, magnetic coolers, spin transition materials, photomagnets, solvato-magnetic materials, including molecular magnetic sponges, luminescent magnets, chiral magnets and photomagnets, SHG-active magnetic materials, pyro- and ferroelectrics, ionic conductors as well as electrochemical containers. Some of these materials can be processed into the nanoscale opening the route towards the development of magnetic, optical and electronic devices. In this review, we summarise all important achievements in the field of octacyanidometallate-based functional materials, with the particular attention to the most recent advances, and present a thorough discussion on non-trivial structural and electronic features of [M(CN)8]n- ions, which are purposefully explored to introduce desired physical properties and their combinations towards advanced multifunctional materials.

11.
Angew Chem Int Ed Engl ; 59(36): 15741-15749, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485003

RESUMO

A two-step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3-CNpy)2 ][Re(CN)8 ]}⋅H2 O (1) (3-CNpy=3-cyanopyridine) assembly consisting of cyanido-bridged FeII -ReV square grid sheets bonded by Cs+ ions. The presence of two non-equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non-covalent interlayer interactions involving Cs+ , [ReV (CN)8 ]3- ions, and 3-CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin-transition phenomenon could be tuned by an external pressure giving the room-temperature range of SCO, as well as by visible-light irradiation, inducing an efficient recovery of the high-spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect.

12.
Chemistry ; 26(49): 11187-11198, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227503

RESUMO

Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII (2-pyrpy)2 ]4 [MIV (CN)8 ]2 }⋅4 MeOH⋅6 H2 O (M=Mo (1 solv), M=W (2 solv) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation-resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4 M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.

13.
Inorg Chem ; 59(9): 5872-5882, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32309930

RESUMO

Chiral photomagnets compose a class of multifunctional molecule-based materials with light-induced alteration of magnetization and chiral properties. The rational design and synthesis of such assemblies is a challenge, and only few such systems are known. Herein, the remarkable octacyanide-bridged enantiomeric pair of 1-D chains [Cu((R,R)-chxn)2]2[Mo(CN)8]·H2O (1R) and [Cu((S,S)-chxn)2]2[Mo(CN)8]·H2O (1S) exhibiting enantiopure structural helicity, which results in optical activity in the 350-800 nm range as confirmed by natural circular dichroism (NCD) spectra, is reported. The photomagnetic effects of 1R, 1S, and 1rac result from the blue light excitation (436 nm) of the photomagnetically active octacyanidomolybdate(IV) ions. In the excited state MoIVHS centers with S = 1 couple antiferromagnetically with the neighboring CuII centers with JCuMo values of -1.3, -1.0, and -1.1 cm-1 for 1R, 1S, and 1rac, respectively. The values of thermal relaxation energy barriers have been estimated as 142 and 356 K for 1R and 1S, being comparable with the energy range of the thermal bath. The value for 1rac reveals a significantly lower value of 75 K. On the basis of these results the value of gMoHS has been estimated to be in the range 4.8-5.8.

14.
J Am Chem Soc ; 142(8): 3970-3979, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017548

RESUMO

Lanthanide(III)-based coordination complexes have been explored as a source of bifunctional molecular materials combining Single-Molecule Magnet (SMM) behavior with visible-to-near-infrared photoluminescence. In pursuit of more advanced multifunctionality, the next target is to functionalize crystalline solids based on emissive molecular nanomagnets toward high proton conductivity and an efficient luminescent thermometric effect. Here, a unique multifunctional molecule-based material, (H5O2)2(H)[YbIII(hmpa)4][CoIII(CN)6]2·0.2H2O (1, hmpa = hexamethylphosphoramide), composed of molecular {YbCo2}3- anions noncovalently bonded to acidic H5O2+ and H+ ions, is reported. The resulting YbIII complexes present a slow magnetic relaxation below 6 K and room temperature NIR 4f-centered photoluminescence sensitized by [Co(CN)6]3- ions. The microporous framework, built on these emissive magnetic molecules, exhibits a high proton conductivity of the H-hopping mechanism reaching σ of 1.7 × 10-4 S·cm-1 at 97% relative humidity, which classifies 1 as a superionic conductor. Moreover, the emission pattern is strongly temperature-dependent which was utilized in achieving a highly sensitive single-center luminescent thermometer with a relative thermal sensitivity, Sr > 1% K-1 in the 50-175 K range. This work shows an unprecedented combination of magnetic, optical, and electrical functionalities in a single phase working as a proton conductive NIR-emissive thermometer based on Single-Molecule Magnets.

15.
Inorg Chem ; 59(2): 1393-1404, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31909606

RESUMO

We report an efficient pathway toward sensitization of red room temperature EuIII emission by the charge-transfer (CT) states related to d8-d10 heterometallophilic interactions achieved by the simultaneous application of tetracyanidometallates of PtII/PdII and dicyanidometallates of AuI/AgI in the construction of a trimetallic d-d-f assembly. The combination of Eu3+, [MII(CN)4]2- (M = Pt, Pd), and [MI(CN)2]- (M = Au, Ag) ions along with 4,4'-bipyridine N,N'-dioxide (4,4'-bpdo) results in four novel isostructural 2D {[EuIII(4,4'-bpdo)(H2O)2][MII(CN)4]}·[MI(CN)2]·H2O (MII/MI = Pt/Au, 1; Pt/Ag, 2; Pd/Au, 3; Pd/Ag, 4) coordination networks. They are built of hybrid coordination layers, based on cyanido-bridged {EuIII[MII(CN)4]}n square grids coexisting with metal-organic {EuIII(4,4'-bpdo)}n chains, with the further attachment of [MI(CN)2]- ions through metallophilic {MII-MI} interactions. This results in dinuclear {MIIMI} units generating an orange emissive metal-to-metal-to-ligand charge-transfer (MMLCT) state, whose energy is tuned by the applied d8-d10 metal centers. Thanks to these CT states, 1-4 exhibit room temperature red EuIII photoluminescence enhanced by energy transfer from {MIIMI} units, with the additional role of 4,4'-bpdo also transferring the energy to lanthanides. These donor CT states lying in the visible range successfully broaden the available efficient excitation range up to 500 nm. The overall emission quantum yield ranges from 8(1)% for 4 to 15(2)% for 1, with the intermediate values for 2 and 3 relatively high among the reported EuIII-based compounds with tetracyanido- and dicyanidometallates. We found that the sensitization efficiency is equally high for all compounds because of the similar energies of the CT states, while the main differences are related to the observed emission lifetimes ranging from ca. 80 µs for 4 to 120-130 µs for 2 and 3 to ca. 180 µs for 1. This phenomenon was correlated with the energies of the vibrational states, e.g., cyanide stretching vibrations, responsible for nonradiative deactivation of EuIII excited states, which are the highest for the Pd/Ag pair of 4 and the lowest for the Pt/Au pair in 1. Thus, the heaviest pair of PtII/AuI cyanide metal complexes is proven to be the best candidate for the sensitization of room temperature EuIII luminescence.

16.
J Am Chem Soc ; 141(48): 19067-19077, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31747269

RESUMO

Magnetic photoswitching is a highly important but relatively rare phenomenon for enabling optical writing/reading of the magnetic state of a molecule. In this work, an unprecedented site-selective double photoswitching is reported from the assembly of two different "photomagnetic chromophores" into a single hexanuclear molecule: namely, a spin-crossover Fe(II) center exhibiting light-induced excited spin state trapping (LIESST) and a photochemically active octacyanometalate(IV) unit. Four different magnetization levels are accessible through the appropriate combination of violet/red light and temperature, results that highlight the potential of photomagnetic molecules as future molecular memory cells.

17.
Inorg Chem ; 58(23): 15812-15823, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31714074

RESUMO

The 2D coordination network (NH4)2[NiII(cyclam)]3[NbIV(CN)8]2·21H2O (1·21H2O) was obtained on a cation-assisted synthetic pathway. The reaction between [Ni(cyclam)]2+ and [Nb(CN)8]4- in the presence of excess of NH4Cl resulted in the formation of negatively charged coordination layers with the simultaneous incorporation of the NH4+ cations into the microporous channels of the structure. 1·21H2O network can be partly dehydrated in a single-crystal-to-single-crystal structural transformation to give (NH4)2[NiII(cyclam)]3[NbIV(CN)8]2·14H2O (1·14H2O). The dehydration-induced structural changes, in particular the deformation of CN--bridges and the disruption of interlayer interactions, give rise to the solvatomagnetic effect. Fully hydrated 1·21H2O phase is a ferrimagnet with a critical temperature of magnetic ordering of 7.6 K and a narrow magnetization hysteresis loop, while 1·14H2O hydrate is an antiferromagnet with Tc = 7.2 K and metamagnetic transition at 6.3 kOe. Thanks to the presence of the NH4+ ions in the structure, the proton conductivity of ∼4 × 10-5 S cm-1 (295 K, 100% relative humidity, RH) is observed with the activation energy of 0.80 eV.

18.
J Am Chem Soc ; 141(45): 18211-18220, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31626543

RESUMO

Microporous magnets compose a class of multifunctional molecule-based materials where desolvation-driven structural transformation leads to the switching of magnetic properties. Herein, we present a special type of microporous magnet where a dehydration-hydration process within a bimetal coordination framework results in the switching of emissive DyIII single-molecule magnets (SMMs). We report a three-dimensional (3-D) cyanido-bridged coordination polymer, {[DyIII(H2O)2][CoIII(CN)6]}·2.2H2O (1), and its dehydrated form of {DyIII[CoIII(CN)6]} (2), which was obtained through a reversible single-crystal-to-single-crystal transformation. Both phases are composed of paramagnetic DyIII centers alternately arranged with diamagnetic hexacyanidocobaltates(III). The hydrated phase contains eight-coordinated [DyIII(µ-NC)6(H2O)2]3- complexes of a square antiprism geometry, while the dehydrated form contains six-coordinated [DyIII(µ-NC)6]3- moieties of a trigonal prism geometry. This change in coordination geometry results in the generation of DyIII single-molecule magnets in 2, whereas slow magnetic relaxation effect is not observed for DyIII sites in 1. The D4d-to-D3h symmetry change of DyIII complexes produces also the shift of photoluminescent color from nearly white to deep yellow thanks to the modulation of emission bands of f-f electronic transitions. A combined approach utilizing dc magnetic data and low-temperature emission spectra confirmed an axial crystal field of trigonal prismatic DyIII complexes in 2, which produces an Orbach type of slow magnetic relaxation. Therefore, we present a unique route to the efficient switching of SMM behavior and photoluminescence of DyIII complexes embedded in a 3-D cyanido-bridged framework.

19.
Chemistry ; 25(51): 11820-11825, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31206906

RESUMO

Three-dimensional bimetallic cyanido-bridged frameworks, [LnIII (2,2'-bipyridine N,N'-dioxide)2 (H2 O)][CuI 2 (CN)5 ]⋅5 H2 O (Ln=Dy, 1; Yb, 2), are reported. They exhibit the effect of slow relaxation of magnetization, leading to a magnetic hysteresis loop, and sensitized visible-to-near-infrared photoluminescence. Both physical properties are related to the eight-coordinated lanthanide(III) complexes embedded in the unprecedented coordination skeleton composed of symmetry-breaking polycyanidocuprate linkers. The three-dimensional d-f cyanido-bridged network was shown to serve as an efficient coordination scaffold to achieve emissive lanthanide single-molecule magnets.

20.
Inorg Chem ; 58(9): 6052-6063, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31002260

RESUMO

We report a unique synthetic route toward the multistep spin crossover (SCO) effect induced by utilizing the partial ligand transformation during the crystallization process, which leads to the incorporation of three different FeII complexes into a single coordination framework. The 3-acetoxypyridine (3-OAcpy) molecules were introduced to the self-assembled FeII-[MIV(CN)8]4- (M = Mo, Nb) system in the aqueous solution which results in the partial hydrolysis of the ligand into 3-hydroxypyridine (3-OHpy). It gives two novel isostructural three-dimensional {FeII2(3-OAcpy)5(3-OHpy)3[MIV(CN)8]}· nH2O (M = Mo, n = 0, FeMo; M = Nb, n = 1, FeNb) coordination frameworks. They exhibit an unprecedented cyanido-bridged skeleton composed of {Fe3M2} n coordination nanotubes bonded by additional Fe complexes. These frameworks contain three types of Fe sites differing in the attached organic ligands, [Fe1(3-OAcpy)4(µ-NC)2], [Fe2(3-OHpy)4(µ-NC)2], and [Fe3(3-OAcpy)3(3-OHpy)(µ-NC)2], which lead to the thermal two-step FeII SCO, as proven by X-ray diffraction, magnetic susceptibility, UV-vis-NIR optical absorption, and 57Fe Mössbauer spectroscopy studies. The first step of SCO, going from room temperature to the 150-170 K range with transition temperatures of 245(5) and 283(5) K for FeMo and FeNb, respectively, is related to Fe1 sites, while the second step, occurring at the 50-140 K range with transition temperatures of 70(5) and 80(5) K for FeMo and FeNb, respectively, is related to Fe2 sites. The Fe3 site with both 3-OAcpy and 3-OHpy ligands does not undergo the SCO at all. The observed two-step SCO phenomenon is explained by the differences in the ligand field strength of the Fe complexes and the role of their alignment in the coordination framework. The simultaneous application of two related pyridine derivatives is the efficient synthetic route for the multistep FeII SCO in the cyanido-bridged framework which is a promising step toward rational design of advanced spin transition molecular switches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA