Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
ACS Appl Mater Interfaces ; 16(21): 27887-27897, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38753657

RESUMO

Zeolitic imidazolate framework (ZIF-8) is a promising material for gas separation applications. It also serves as a prototype for numerous ZIFs, including amorphous ones, with a broader range of possible applications, including sensors, catalysis, and lithography. It consists of zinc coordinated with 2-methylimidazolate (2mIm) and has been synthesized with methods ranging from liquid-phase to solvent-free synthesis, which aim to control its crystal size and shape, film thickness and microstructure, and incorporation into nanocomposites. Depending on the synthesis method and postsynthesis treatments, ZIF-8 materials may deviate from the nominal defect-free ZIF-8 crystal structure due to defects like missing 2mIm, missing zinc, and physically adsorbed 2mIm trapped in the ZIF-8 pores, which may alter its performance and stability. Infrared (IR) spectroscopy has been used to assess the presence of defects in ZIF-8 and related materials. However, conflicting interpretations by various authors persist in the literature. Here, we systematically investigate ZIF-8 vibrational spectra by combining experimental IR spectroscopy and first-principles molecular dynamics simulations, focusing on assigning peaks and elucidating the spectroscopic signals of putative defects present in the ZIF-8 material. We attempt to resolve conflicting assignments from the literature and to provide a comprehensive understanding of the vibrational spectra of ZIF-8 and its defect-induced variations, aiming toward more precise quality control and design of ZIF-8-based materials for emerging applications.

2.
J Chem Theory Comput ; 20(12): 5259-5275, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38639538

RESUMO

Using knowledge from statistical thermodynamics and crystallography, we develop an image-image translation model, called SorbIIT, that uses three-dimensional grids of adsorbate-adsorbent interaction energies as input to predict the spatially resolved loading surface of nanoporous materials over a broad range of temperatures and pressures. SorbIIT consists of a closed-form differential model for loading-surface prediction and a U-Net to generate spatial differential distributions from the energy grids. SorbIIT is trained using the energy grids and adsorbate distributions (obtained from high-throughput simulations) of 50 synthesized and 70 hypothetical zeolites and applied for predicting the adsorption of carbon dioxide, hydrogen sulfide, n-butane, 2-methylpropane, krypton, and xenon in other zeolites from 256 to 400 K. Employing a quadratic isotherm model for the local differentiation, SorbIIT yields mean R2 values of 0.998 for total adsorption and 0.6904 for local adsorption with a resolution of 0.2 Å, and a value of 0.721 for the structural similarity of the local loading distribution.

3.
Int J Pharm ; 657: 124121, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38621617

RESUMO

In-situ forming poly(lactic-co-glycolic acid) (PLGA) implants offer a great potential for controlled drug delivery for a variety of applications, e.g. periodontitis treatment. The polymer is dissolved in a water-miscible solvent. The drug is dissolved or dispersed in this solution. Upon contact with aqueous body fluids, the solvent diffuses into the surrounding tissue and water penetrates into the formulation. Consequently, PLGA precipitates, trapping the drug. Often, N-methyl-2-pyrrolidine (NMP) is used as a water-miscible solvent. However, parenteral administration of NMP raises toxicity concerns. The aim of this study was to identify less toxic alternative solvent systems for in-situ forming PLGA implants. Various blends of polyethylene glycol 400 (PEG 400), triethyl citrate (TEC) and ethanol were used to prepare liquid formulations containing PLGA, ibuprofen (as an anti-inflammatory drug) and/or chlorhexidine dihydrochloride (as an antiseptic agent). Implant formation and drug release kinetics were monitored upon exposure to phosphate buffer pH 6.8 at 37 °C. Furthermore, the syringeability of the liquids, antimicrobial activity of the implants, and dynamic changes in the latter's wet mass and pH of the release medium were studied. Importantly, 85:10:5 and 60:30:10 PEG 400:TEC:ethanol blends provided good syringeability and allowed for rapid implant formation. The latter controlled ibuprofen and chlorhexidine release over several weeks and assured efficient antimicrobial activity. Interestingly, fundamental differences were observed concerning the underlying release mechanisms of the two drugs: Ibuprofen was dissolved in the solvent mixtures and partially leached out together with the solvents during implant formation, resulting in relatively pronounced burst effects. In contrast, chlorhexidine dihydrochloride was dispersed in the liquids in the form of tiny particles, which were effectively trapped by precipitating PLGA during implant formation, leading to initial lag-phases for drug release.


Assuntos
Clorexidina , Implantes de Medicamento , Liberação Controlada de Fármacos , Ibuprofeno , Polietilenoglicóis , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solventes , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Solventes/química , Ibuprofeno/química , Ibuprofeno/administração & dosagem , Polietilenoglicóis/química , Implantes de Medicamento/química , Ácido Poliglicólico/química , Clorexidina/química , Clorexidina/administração & dosagem , Ácido Láctico/química , Citratos/química , Etanol/química
4.
Int J Pharm X ; 7: 100233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379554

RESUMO

Polysaccharides were identified, which allow for colon targeting in human Inflammatory Bowel Disease (IBD) patients, as well as in rats and dogs (which are frequently used as animals in preclinical studies). The polysaccharides are degraded by colonic enzymes (secreted by bacteria), triggering the onset of drug release at the target site. It has to be pointed out that the microbiota in rats, dogs and humans substantially differ. Thus, the performance of this type of colon targeting system observed in animals might not be predictive for patients. The aim of this study was to limit this risk. Different polysaccharides were exposed to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats" (in which colonic inflammation was induced). Dynamic changes in the pH of the culture medium were used as an indicator for the proliferation of the bacteria and, thus, the potential of the polysaccharides to serve as their substrate. Fundamental differences were observed with respect to the extent of the pH variations as well as their species-dependency. The most promising polysaccharides were used to prepare polymeric film coatings surrounding 5-aminosaliciylic acid (5-ASA)-loaded starter cores. To limit premature polysaccharide dissolution/swelling in the upper gastro intestinal tract, ethylcellulose was also included in the film coatings. Drug release was monitored upon exposure to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats". For reasons of comparison, also 5-ASA release in pure culture medium was measured. Most film coatings showed highly species-dependent drug release kinetics or limited colon targeting capacity. Interestingly, extracts from aloe vera and reishi (a mushroom) showed a promising potential for colon targeting in all species.

5.
Biomacromolecules ; 25(2): 1291-1302, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38170593

RESUMO

Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.


Assuntos
Celobiose , Cristais Líquidos , Glicolipídeos/química , Cristais Líquidos/química , Varredura Diferencial de Calorimetria , Microscopia
6.
J Am Chem Soc ; 145(51): 28284-28295, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38090755

RESUMO

We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g-1) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs.

7.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095201

RESUMO

Molecular dynamics simulations in the microcanonical ensemble are performed to study the collapse of a bubble in liquid water using the single-site mW and the four-site TIP4P/2005 water models. To study system size effects, simulations for pure water systems are performed using periodically replicated simulation boxes with linear dimensions, L, ranging from 32 to 512 nm with the largest systems containing 8.7 × 106 and 4.5 × 109 molecules for the TIP4P/2005 and mW water models, respectively. The computationally more efficient mW water model allows us to reach converging behavior when the bubble dynamics results are plotted in reduced units, and the limiting behavior can be obtained through linear extrapolation in L-1. Qualitative differences are observed between simulations with the mW and TIP4P/2005 water models, but they can be explained by the models' differences in predicted viscosity and surface tension. Although bubble collapse occurs on time scales of only hundreds of picoseconds, the system sizes used here are sufficiently large to obtain bubble dynamics consistent with the Rayleigh-Plesset equation when using the models' thermophysical properties as input. For the conditions explored here, extreme heating of the interfacial water molecules near the time of collapse is observed for the larger mW water systems (but the model underpredicts the viscosity), whereas heating is less pronounced for the TIP4P/2005 water systems because its larger viscosity contribution slows the collapse dynamics. The presence of nitrogen within the bubble only starts to affect bubble dynamics near the very end of the initial collapse, leading to an incomplete collapse and strong rebound for the mW water model. Although nitrogen is non-condensable at 300 K, it becomes highly compressed and reaches a liquid-like density near the collapse point. We find that the dissolution of nitrogen is much slower than the movement of the collapsing water front, and the re-expansion of the dense nitrogen droplet gives rise to bubble rebound. The incompatibility of the collapse and dissolution time scales should be considered for continuum-scale modeling of bubble dynamics. We also confirm that the diffusion coefficient for dissolved nitrogen is insensitive to pressure as the liquid transitions from a compressed to a stretched state.

8.
J Am Chem Soc ; 145(51): 27975-27983, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085867

RESUMO

Chemically stable metal-organic frameworks (MOFs) featuring interconnected hierarchical pores have proven to be promising for a remarkable variety of applications. Nevertheless, the framework's susceptibility to capillary-force-induced pore collapse, especially during water evacuation, has often limited practical applications. Methodologies capable of predicting the relative magnitudes of these forces as functions of the pore size, chemical composition of the pore walls, and fluid loading would be valuable for resolution of the pore collapse problem. Here, we report that a molecular simulation approach centered on evacuation-induced nanocavitation within fluids occupying MOF pores can yield the desired physical-force information. The computations can spatially pinpoint evacuation elements responsible for collapse and the chemical basis for mitigation of the collapse of modified pores. Experimental isotherms and difference-electron density measurements of the MOF NU-1000 and four chemical variants validate the computational approach and corroborate predictions regarding relative stability, anomalous sequence of pore-filling, and chemical basis for mitigation of destructive forces.

9.
Int J Pharm X ; 6: 100220, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38146325

RESUMO

This study aimed to evaluate and better understand the potential impact that a layer of surrounding hydrogel (mimicking living tissue) can have on the drug release from PLGA microparticles. Ibuprofen-loaded microparticles were prepared with an emulsion solvent extraction/evaporation method. The drug loading was about 48%. The surface of the microparticles appeared initially smooth and non-porous. In contrast, the internal microstructure of the particles exhibited a continuous network of tiny pores. Ibuprofen release from single microparticles was measured into agarose gels and well-agitated phosphate buffer pH 7.4. Optical microscopy, scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and X-ray µCT imaging were used to characterize the microparticles before and after exposure to the release media. Importantly, ibuprofen release was much slower in the presence of a surrounding agarose gel, e.g., the complete release took two weeks vs. a few days in well agitated phosphate buffer. This can probably be attributed to the fact that the hydrogel sterically hinders substantial system swelling and, thus, slows down the related increase in drug mobility. In addition, in this particular case, the convective flow in agitated bulk fluid likely damages the thin PLGA layer at the microparticles' surface, giving the outer aqueous phase more rapid access to the inner continuous pore network: Upon contact with water, the drug dissolves and rapidly diffuses out through a continuous network of water-filled channels. Without direct surface access, most of the drug "has to wait" for the onset of substantial system swelling to be released.

10.
J Control Release ; 363: 1-11, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714435

RESUMO

Different types of ibuprofen-loaded, poly (D,L lactic-co-glycolic acid) (PLGA)-based implants were prepared by 3D printing (Droplet Deposition Modeling). The theoretical filling density of the mesh-shaped implants was varied from 10 to 100%. Drug release was measured in agarose gels and in well agitated phosphate buffer pH 7.4. The key properties of the implants (and dynamic changes thereof upon exposure to the release media) were monitored using gravimetric measurements, optical microscopy, Differential Scanning Calorimetry, Gel Permeation Chromatography, and Scanning Electron Microscopy. Interestingly, drug release was similar for implants with 10 and 30% filling density, irrespective of the experimental set-up. In contrast, implants with 100% filling density showed slower release kinetics, and the shape of the release curve was altered in agarose gels. These observations could be explained by the existence (or absence) of a continuous aqueous phase between the polymeric filaments and the "orchestrating role" of substantial system swelling for the control of drug release. At lower filling densities, it is sufficient for the drug to be released from a single filament. In contrast, at high filling densities, the ensemble of filaments acts as a much larger (more or less homogeneous) polymeric matrix, and the average diffusion pathway to be overcome by the drug is much longer. Agarose gel (mimicking living tissue) hinders substantial PLGA swelling and delays the onset of the final rapid drug release phase. This improved mechanistic understanding of the control of drug release from PLGA-based 3D printed implants can help to facilitate the optimization of this type of advanced drug delivery systems.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Liberação Controlada de Fármacos , Ácido Poliglicólico/química , Sefarose , Ácido Láctico/química , Géis , Impressão Tridimensional , Implantes de Medicamento
11.
Int J Pharm ; 645: 123416, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716485

RESUMO

Amorphous riboflavin (free base) could be produced for the first time via high energy ball milling of a commercial crystalline form (Form I). Importantly, this solid state amorphization process allowed to circumvent chemical degradation occurring during melting as well as the lack of suitable solvents, which are required for amorphization via spray- or freeze-drying. The amorphous state of riboflavin was thoroughly characterized, revealing a complex recrystallization pattern upon heating, involving two enantiotropic polymorphic forms (II and III) and a dihydrate. The glass transition temperature (Tg) and heat capacity (Cp) jump of the amorphous form were determined as 144 °C and 0.68 J/g/°C. Moreover, the relative physical stability of the different physical states has been elucidated, e.g., at room temperature: I > II > III. The following rank order was observed for the dissolution rates in water at 37 °C during the first 4 h: amorphous > III ≈ II > I. Afterwards, a dihydrate crystallized from the solutions of amorphous and metastable crystalline riboflavin forms, the solubility of which was well above the solubility of the stable FormI.


Assuntos
Temperatura Alta , Temperatura de Transição , Temperatura , Liofilização , Solubilidade , Estabilidade de Medicamentos , Difração de Raios X , Varredura Diferencial de Calorimetria
12.
J Phys Chem B ; 127(16): 3672-3681, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37067787

RESUMO

Vapor-liquid equilibria of binary systems consisting of a low-boiling (i.e., more volatile) and a high-boiling compound may exhibit unexpected behavior near the critical point of the low-boiling compound. Near the critical temperature of the low-boiling compound and for compositions rich in the low-boiling compound, increasing the pressure may result in multiple crossings of the dew- and bubble-point curves. This phenomenon is often called double retrograde vaporization (or condensation) and may play a role in oil field operations and gas transport through pipelines, but the microscopic driving forces for the unusual shape of the dew-point curve are not well understood. Monte Carlo simulations in the constant-pressure, constant-temperature Gibbs ensemble using the united-atom version of the TraPPE force field were carried out for the methane/n-butane mixture at temperatures ranging from 0.95 to 1.05 of the reduced (T/Tc) temperature of methane. The simulations predict a wealth of additional thermodynamic data (densities and free energies of transfer) and structural data that are used to provide much needed molecular-level insights into the fluid properties associated with double retrograde vaporization. Simulated thermodynamic data are also compared with calculations using the Peng-Robinson and PC-SAFT equations of state.

13.
ACS Cent Sci ; 9(3): 551-557, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968524

RESUMO

A linker extension strategy for generating metal-organic frameworks (MOFs) with superior moisture-capturing properties is presented. Applying this design approach involving experiment and computation results in MOF-LA2-1 {[Al(OH)(PZVDC)], where PZVDC2- is (E)-5-(2-carboxylatovinyl)-1H-pyrazole-3-carboxylate}, which exhibits an approximately 50% water capacity increase compared to the state-of-the-art water-harvesting material MOF-303. The power of this approach is the increase in pore volume while retaining the ability of the MOF to harvest water in arid environments under long-term uptake and release cycling, as well as affording a reduction in regeneration heat and temperature. Density functional theory calculations and Monte Carlo simulations give detailed insight pertaining to framework structure, water interactions within its pores, and the resulting water sorption isotherm.

14.
J Chem Theory Comput ; 19(14): 4568-4583, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-36735251

RESUMO

A major obstacle for machine learning (ML) in chemical science is the lack of physically informed feature representations that provide both accurate prediction and easy interpretability of the ML model. In this work, we describe adsorption systems using novel two-dimensional energy histogram (2D-EH) features, which are obtained from the probe-adsorbent energies and energy gradients at grid points located throughout the adsorbent. The 2D-EH features encode both energetic and structural information of the material and lead to highly accurate ML models (coefficient of determination R2 ∼ 0.94-0.99) for predicting single-component adsorption capacity in metal-organic frameworks (MOFs). We consider the adsorption of spherical molecules (Kr and Xe), linear alkanes with a wide range of aspect ratios (ethane, propane, n-butane, and n-hexane), and a branched alkane (2,2-dimethylbutane) over a wide range of temperatures and pressures. The interpretable 2D-EH features enable the ML model to learn the basic physics of adsorption in pores from the training data. We show that these MOF-data-trained ML models are transferrable to different families of amorphous nanoporous materials. We also identify several adsorption systems where capillary condensation occurs, and ML predictions are more challenging. Nevertheless, our 2D-EH features still outperform structural features including those derived from persistent homology. The novel 2D-EH features may help accelerate the discovery and design of advanced nanoporous materials using ML for gas storage and separation in the future.

15.
J Am Chem Soc ; 145(2): 1407-1422, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598430

RESUMO

Grafting metal cations to missing linker defect sites in zirconium-based metal-organic frameworks, such as UiO-66, produces a uniquely well-defined and homotopic catalytically active site. We present here the synthesis and characterization of a group of UiO-66-supported metal catalysts, M-UiO-66 (M = Ni, Co, Cu, and Cr), for the catalytic dimerization of alkenes. The hydrogen-deuterium exchange via deuterium oxide adsorption followed by infrared spectroscopy showed that the last molecular water ligand desorbs from the sites after evacuation at 300 °C leading to M(OH)-UiO-66 structures. Adsorption of 1-butene is studied using calorimetry and density functional theory techniques to characterize the interactions of the alkene with metal cation sites that are found active for alkene oligomerization. For the most active Ni-UiO-66, the removal of molecular water from the active site significantly increases the 1-butene adsorption enthalpy and almost doubles the catalytic activity for 1-butene dimerization in comparison to the presence of water ligands. Other M-UiO-66 (M = Co, Cu, and Cr) exhibit 1-3 orders of magnitude lower catalytic activities compared to Ni-UiO-66. The catalytic activities correlate linearly with the Gibbs free energy of 1-butene adsorption. Density functional theory calculations probing the Cossee-Arlman mechanism for all metals support the differences in activity, providing a molecular level understanding of the metal site as the active center for 1-butene dimerization.


Assuntos
Compostos Organometálicos , Adsorção , Dimerização , Cátions , Zircônio/química , Alcenos , Água/química
16.
J Control Release ; 353: 864-874, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464064

RESUMO

3D Printing offers a considerable potential for personalized medicines. This is especially true for customized biodegradable implants, matching the specific needs of each patient. Poly(lactic-co-glycolic acid) (PLGA) is frequently used as matrix former in biodegradable implants. However, yet relatively little is known on the technologies, which can be used for the 3D printing of PLGA implants. The aim of this study was to compare: (i) Arburg Plastic Freeforming Droplet Deposition Modeling (APF DDM), and (ii) Fused Deposition Modeling (FDM) to print mesh-shaped, ibuprofen-loaded PLGA implants. During APF DDM, individual drug-polymer droplets are deposited, fusing together to form filaments, which build up the implants. During FDM, continuous drug-polymer filaments are deposited to form the meshes. The implants were thoroughly characterized before and after exposure to phosphate buffer pH 7.4 using optical and scanning electron microscopy, GPC, DSC, drug release measurements and monitoring dynamic changes in the systems' dry & wet mass and pH of the bulk fluid. Interestingly, the mesh structures were significantly different, although the device design (composition & theoretical geometry) were the same. This could be explained by the fact that the deposition of individual droplets during APF DDM led to curved and rather thick filaments, resulting in a much lower mesh porosity. In contrast, FDM printing generated straight and thinner filaments: The open spaces between them were much larger and allowed convective mass transport during drug release. Consequently, most of the drug was already released after 4 d, when substantial PLGA set on. In the case of APF DDM printed implants, most of the drug was still entrapped at that time point and substantial polymer swelling transformed the meshes into more or less continuous PLGA gels. Hence, the diffusion pathways became much longer and ibuprofen release was controlled over 2 weeks.


Assuntos
Ibuprofeno , Polímeros , Humanos , Polímeros/química , Liberação Controlada de Fármacos , Impressão Tridimensional
17.
Eur J Pharm Biopharm ; 183: 13-23, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563887

RESUMO

Several formulation strategies have been proposed for oral colon delivery, particularly for the therapy of inflammatory bowel disease (IBD). However, targeting the large intestine remains a challenging goal. The aim of this study was to develop and evaluate a novel type of drug delivery system, which is based on multiple drug release triggers for reliable performance. The system consists of: (i) a drug core, (ii) an inner swellable low-viscosity hydroxypropyl methylcellulose (HPMC) layer, and (iii) an outer film coating based on a Eudragit® S:high-methoxyl (HM) pectin (7:3 w/w) blend, optionally containing chitosan. Convex immediate release tablets (2 or 4 mm in diameter) containing paracetamol or 5-aminosalicylic acid (5-ASA) were coated in a fluid bed. The double-coated tablets exhibited pulsatile release profiles when changing the release medium from 0.1 N HCl to phosphate buffer pH 7.4. Also, drug release was faster in simulated colonic fluid (SCF) in the presence of fecal bacteria from IBD patients compared to control culture medium from tablets with outer Eudragit® S: HM pectin: chitosan coatings. The latter systems showed promising results in the control of the progression of colitis and alteration of the microbiota in a preliminary rat study.


Assuntos
Quitosana , Doenças Inflamatórias Intestinais , Ratos , Animais , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos/métodos , Colo , Comprimidos , Mesalamina , Doenças Inflamatórias Intestinais/tratamento farmacológico , Pectinas , Solubilidade
18.
Int J Pharm X ; 4: 100141, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36465275

RESUMO

The aim of this study was to better understand the long term behavior of silicone-based cochlear implants loaded with dexamethasone: in vitro as well as in vivo (gerbils). This type of local controlled drug delivery systems offers an interesting potential for the treatment of hearing loss. Because very long release periods are targeted (several years/decades), product optimization is highly challenging. Up to now, only little is known on the long term behavior of these systems, including their drug release patterns as well as potential swelling or shrinking upon exposure to aqueous media or living tissue. Different types of cylindrical, cochlear implants were prepared by injection molding, varying their dimensions (being suitable for use in humans or gerbils) and initial drug loading (0, 1 or 10%). Dexamethasone release was monitored in vitro upon exposure to artificial perilymph at 37 °C for >3 years. Optical microscopy, X-ray diffraction and Raman imaging were used to characterize the implants before and after exposure to the release medium in vitro, as well as after 2 years implantation in gerbils. Importantly, in all cases dexamethasone release was reliably controlled during the observation periods. Diffusional mass transport and limited drug solubility effects within the silicone matrices seem to play a major role. Initially, the dexamethasone is homogeneously distributed throughout the polymeric matrices in the form of tiny crystals. Upon exposure to aqueous media or living tissue, limited amounts of water penetrate into the implant, dissolve the drug, which subsequently diffuses out. Surface-near regions are depleted first, resulting in an increase in the apparent drug diffusivity with time. No evidence for noteworthy implant swelling or shrinkage was observed in vitro, nor in vivo. A simplified mathematical model can be used to facilitate drug product optimization, allowing the prediction of the resulting drug release rates during decades as a function of the implant's design.

19.
Int J Pharm X ; 4: 100131, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189458

RESUMO

The aim of this study was to better understand the potential impact of partial vs. complete renewal of the bulk fluid during drug release measurements from poly (lactic-co-glycolic acid) (PLGA)-based implants. A "standard experimental set-up", in which the implants were directly exposed to well agitated phosphate buffer pH 7.4 was used, as well as set-ups, in which the implants were embedded within agarose hydrogels (mimicking living tissue). The gels were exposed to well agitated phosphate buffer pH 7.4. Ibuprofen-loaded implants were prepared by hot melt extrusion. The systems were thoroughly characterized before and during drug release by optical and scanning electron microscopy, gravimetric analysis, pH and solubility measurements as well as gel permeation chromatography. The bulk fluid was either completely or partially replaced by fresh medium at each sampling time point. In all cases, sink conditions were provided in the agitated bulk fluids throughout the experiments. Interestingly, the agarose set-ups did not show any noteworthy impact of the bulk fluid sampling volume on the observed drug release patterns, whereas complete fluid renewal in the "standard set-up" led to accelerated drug release. This could be explained by the considerable fragility of the implants once substantial polymer swelling set on, transforming them into PLGA gels: Complete fluid renewal caused partial disintegration and damage of the highly swollen systems, decreasing the lengths of the diffusion pathways for the drug. The mechanical stress is very much reduced at low sampling volumes, or if the implants are embedded within agarose gels. Thus, great care must be taken when defining the conditions for in vitro drug release measurements from PLGA-based implants: Once substantial system swelling sets on, the devices become highly fragile.

20.
Angew Chem Int Ed Engl ; 61(44): e202209034, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35929949

RESUMO

With increasing demands for high-performance water sorption materials, metal-organic frameworks (MOFs) have gained considerable attention due to their high maximum uptake capacities. In many cases, however, high overall capacity is not necessarily accomplishing high working capacity under operating conditions, due to insufficient hydrophilicity and/or water stability. Herein, we present a post-synthetic modification (PSM) of MOF-808, with di-sulfonic acids enhancing simultaneously its hydrophilicity and water stability without sacrificing its uptake capacity of ≈30 mmol g-1 . Di-sulfonic acid PSM enabled a shift of the relative humidity (RH) associated with a sharp step in water vapor sorption from 35-40 % RH in MOF-808 to below 25 % RH. While MOF-808 lost uptake capacity and crystallinity over multiple sorption/desorption cycles, the di-sulfonic acid PSM MOF-808 retained >80 % of the original capacity. PSM MOF-808 exhibited good hydrothermal stability up to 60 °C and high swing capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA