Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 129(5): 295-304, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36163272

RESUMO

Wetlands are one of the most threatened ecosystems in the world because more than 70% of the area worldwide has been lost since 1900. Wetland plant species rely greatly on water for seeds and propagules, which may lead to a downstream unidirectional dispersal and accumulation of genetic diversity downstream. However, several species show no support for unidirectional genetic diversity, revealing the complexity of population dynamics and gene flow in wetlands. Here, we used microsatellite loci to address how the past demographic dynamics shaped the contemporary spatial pattern in genetic diversity and population structure of Cyperus papyrus in wetlands of Southeast Africa. Using spatially explicit analysis and coalescent modelling, we found no support for unidirectional dispersal. Instead, we found higher genetic diversity in populations upstream than downstream in the river basin. We also found high admixture among populations, most likely due to connections between adjacent river basins during sporadic floods, and ongoing gene flow due to bird-mediated seed dispersal. Our results suggest stepping-stone migration due to strong isolation-by-distance, but not necessarily unidirectional. Moreover, the past demographic dynamics in the Holocene shaped the current pattern of genetic diversity and structure, leading to higher genetic diversity in populations upstream the Zambezi river basin. Our results also point to the very low genetic diversity of C. papyrus populations in Southeast Africa and the need for management and conservation strategies to guarantee the long-term persistence of the species in the region.


Assuntos
Cyperus , Áreas Alagadas , Cyperus/genética , Mudança Climática , Ecossistema , Variação Genética
2.
Sci Rep ; 11(1): 4987, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654151

RESUMO

Estimates of population structure and gene flow allow exploring the historical and contemporary processes that determine a species' biogeographic pattern. In mangroves, large-scale genetic studies to estimate gene flow have been conducted predominantly in the Indo-Pacific and Atlantic region. Here we examine the genetic diversity and connectivity of Rhizophora mucronata across a > 3,000 km coastal stretch in the Western Indian Ocean (WIO) including WIO islands. Based on 359 trees from 13 populations and using 17 polymorphic microsatellite loci we detected genetic breaks between populations of the (1) East African coastline, (2) Mozambique Channel Area (3) granitic Seychelles, and (4) Aldabra and northern Madagascar. Genetic structure, diversity levels, and patterns of inferred connectivity, aligned with the directionality of major ocean currents, driven by bifurcation of the South Equatorial Current, northward into the East African Coastal Current and southward into the Mozambique Channel Area. A secondary genetic break between nearby populations in the Delagoa Bight coincided with high inbreeding levels and fixed loci. Results illustrate how oceanographic processes can connect and separate mangrove populations regardless of geographic distance.


Assuntos
Fluxo Gênico , Variação Genética , Rhizophoraceae/genética , Oceano Índico
3.
Ecol Evol ; 10(21): 12059-12075, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209270

RESUMO

Mangrove ecosystems along the East African coast are often characterized by a disjunct zonation pattern of seaward and landward Avicennia marina trees. This disjunct zonation may be maintained through different positions in the tidal frame, yielding different dispersal settings. The spatial configuration of the landscape and coastal processes such as tides and waves is expected to largely influence the extent of propagule transport and subsequent regeneration. We hypothesized that landward sites would keep a stronger genetic structure over short distances in comparison with enhanced gene flow among regularly flooded seaward fringes. We tested this hypothesis from densely vegetated A. marina transects of a well-documented mangrove system (Gazi Bay, Kenya) and estimated local gene flow and kinship-based fine-scale genetic structure. Ten polymorphic microsatellite markers in 457 A. marina trees revealed no overall significant difference in levels of allele or gene diversities between sites that differ in hydrological proximity. Genetic structure and connectivity of A. marina populations however indicated an overall effect of geographic distance and revealed a pronounced distinction between channels and topographic setting. Migration models allowed to infer gene flow directionality among channels, and indicated a bidirectional steppingstone between seaward and nearest located landward stands. Admixed gene pools without any fine-scale structure were found within the wider and more exposed Kidogoweni channel, suggesting open systems. Elevated kinship values and structure over 5 to 20 m distance were only detected in two distant landward and seaward transects near the mouth of the Mkurumuji River, indicating local retention and establishment. Overall, our findings show that patterns of A. marina connectivity are explained by hydrological proximity, channel network structure, and hydrokinetic energy, rather than just their positioning as disjunct landward or seaward zones.

4.
Front Plant Sci ; 9: 806, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951080

RESUMO

Coastal salt- and brackish water lagoons are unique shallow habitats characterized by beds of submerged seagrasses and salt-tolerant Ruppia species. Established long-term and large-scale patterns of connectivity in lagoon systems can be strongly determined by patterns of nearshore and coastal currents next to local bird-mediated seed dispersal. Despite the importance of dispersal in landscape ecology, characterizing patterns of connectivity remains challenging in aquatic systems. Here, we aimed at inferring connectivity distances of Ruppia cirrhosa along European coastal lagoons using a population genetic imprint and modeled dispersal trajectories using an eddy-resolving numerical ocean model that includes tidal forcing. We investigated 1,303 individuals of 46 populations alongside subbasins of the Mediterranean (Balearic, Tyrrhenian, Ionian) and the Atlantic to Baltic Sea coastline over maximum distances of 563-2,684 km. Ten microsatellite loci under an autotetraploid condition revealed a mixed sexual and vegetative reproduction mode. A pairwise FST permutation test of populations revealed high levels of historical connectivity only for distance classes up to 104-280 km. Since full range analysis was not fully explanatory, we assessed connectivity in more detail at coastline and subbasin level using four approaches. Firstly, a regression over restricted geographical distances (300 km) was done though remained comparable to full range analysis. Secondly, piecewise linear regression analyses yielded much better explained variance but the obtained breakpoints were shifted toward greater geographical distances due to a flat slope of regression lines that most likely reflect genetic drift. Thirdly, classification and regression tree analyses revealed threshold values of 47-179 km. Finally, simulated ocean surface dispersal trajectories for propagules with floating periods of 1-4 weeks, were congruent with inferred distances, a spatial Bayesian admixed gene pool clustering and a barrier detection method. A kinship based spatial autocorrelation showed a contemporary within-lagoon connectivity up to 20 km. Our findings indicate that strong differentiation or admixtures shaped historical connectivity and that a pre- and post LGM genetic imprint of R. cirrhosa along the European coasts was maintained from their occurrence in primary habitats. Additionally, this study demonstrates the importance of unraveling thresholds of genetic breaks in combination with ocean dispersal modeling to infer patterns of connectivity.

5.
PLoS One ; 13(1): e0190810, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29338034

RESUMO

Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers. A total of 636 ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with discrete sedimentation regimes (high vs. low) were sampled for two years. We found that ramets under the high sedimentation regime (HSR) were significantly clumped and denser than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR resulted in significantly different ramets with short culm height and girth diameter as compared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimentation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal richness, size, dominance, and clonal subrange differed significantly between sediment regimes and studied time periods. Each swamp under HSR revealed a significantly high clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal richness reflected the occurrence of initial and repeated seedling recruitment strategies as a response to different sedimentation regimes. Overall, our spatial and short-term temporal observations highlighted that HSR enhances clonal richness and decreases clonal subrange owing to repeated seedling recruitment and genets turnover.


Assuntos
Cyperus/crescimento & desenvolvimento , Cyperus/genética , Aclimatação , Adaptação Fisiológica , Biodiversidade , Cyperus/fisiologia , DNA de Plantas/genética , Etiópia , Variação Genética , Genótipo , Sedimentos Geológicos , Repetições de Microssatélites , Solo , Áreas Alagadas
6.
PLoS One ; 9(8): e104264, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25100173

RESUMO

Many aquatic plant and seagrass species are widespread and the origin of their continent-wide ranges might result from high gene flow levels. The response of species when extending northwards since the Last Glacial Maximum can be opposed to the structuring of their populations that survived glaciation cycles in southern regions. The peri-Mediterranean is a complex series of sea basins, coastlines, islands and river deltas with a unique history since the Messinian Crisis that potentially influenced allopatric processes of aquatic life. We tested whether vast ranges across Europe and the peri-Mediterranean of a global seagrass group (Ruppia species complexes) can be explained by either overall high levels of gene flow or vicariance through linking population genetics, phylogeography and shallow phylogenetics. A multigene approach identified haplogroup lineages of two species complexes, of ancient and recent hybrids with most of the diversity residing in the South. High levels of connectivity over long distances were only observed at recently colonized northern ranges and in recently-filled seas following the last glaciation. A strong substructure in the southern Mediterranean explained an isolation-by-distance model across Europe. The oldest lineages of the southern Mediterranean Ruppia dated back to the period between the end of the Messinian and Late Pliocene. An imprint of ancient allopatric origin was left at basin level, including basal African lineages. Thus both vicariance in the South and high levels of connectivity in the North explained vast species ranges. Our findings highlight the need for interpreting global distributions of these seagrass and euryhaline species in the context of their origin and evolutionary significant units for setting up appropriate conservation strategies.


Assuntos
Adaptação Fisiológica , Alismatales/fisiologia , Evolução Molecular , Salinidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA