Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370737

RESUMO

Protein S (PS), the critical plasma cofactor for the anticoagulants tissue factor (TF) pathway inhibitor (TFPI) and activated protein C (APC), circulates in two functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP) (anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we identified a shear-dependent interaction between PS and von Willebrand Factor (VWF) by mass spectrometry. Consistently, plasma PS and VWF comigrated in both native and agarose gel electrophoresis. The PS/VWF interaction was blocked by TFPI but not APC, suggesting an interaction with the C-terminal sex hormone binding globulin (SHBG) region of PS. Microfluidic systems, mimicking arterial laminar flow or disrupted turbulent flow, demonstrated that PS stably binds VWF as VWF unfolds under turbulent flow. PS/VWF complexes also localized to platelet thrombi under laminar arterial flow. In thrombin generation-based assays, shearing plasma decreased PS activity, an effect not seen in the absence of VWF. Finally, free PS deficiency in COVID-19 patients, measured using an antibody that binds near the C4BP binding site in SHBG, correlated with changes in VWF, but not C4BP, and with thrombin generation. Our data suggest that PS binds to a shear-exposed site on VWF, thus sequestering free PS and decreasing its anticoagulant activity, which would account for the increased thrombin generation potential. As many viral infections present with free PS deficiency, elevated circulating VWF, and increased vascular shear, we propose that the PS/VWF interaction reported here is a likely contributor to virus-associated thrombotic risk.

2.
Platelets ; 34(1): 2264978, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933490

RESUMO

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.


COVID-19 patients exhibit a range of symptoms including microclotting. Clotting is a complex process involving both circulating proteins and platelets, a cell within the blood. Increased clotting is suggestive of an increased level of platelet activation. If this were true, we reasoned that parts of the platelet involved in the release of platelet contents during clotting would have lost their content and appear as expanded, empty "ghosts." To test this, we drew blood from severely ill COVID-19 patients and compared the platelets within the blood draws to those from healthy volunteers. All procedures were done under careful attention to biosafety and approved by health authorities. We looked within the platelets for empty ghosts by the high magnification technique of electron microscopy. To count the ghosts, we developed new computer software. In the end, we found little difference between the COVID patient platelets and the healthy donor platelets. The results suggest that circulating proteins outside of the platelet are more important to the strong clotting response. The software developed will be used to analyze other disease states.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , RNA Viral , SARS-CoV-2 , Plaquetas/ultraestrutura , Organelas
3.
J Am Heart Assoc ; 2(6): e000459, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24334906

RESUMO

BACKGROUND: The small GTPase Rad is a negative regulator of voltage-dependent L-type calcium channel current (ICaL); however, the effects of Rad ablation on cardiomyocyte function are unknown. The objective of this study is to test the hypothesis that Rad-depletion causes positive inotropic effects without inducing cardiac hypertrophy. METHODS AND RESULTS: Ventricular myocytes from adult Rad(-/-) mice were isolated and evaluated by patch-clamp recordings for I(Ca,L) and action potentials, Ca(2+) transients, and sarcomere shortening. Maximum I(CaL) is elevated in Rad(-/-) (maximal conductance 0.35 ± 0.04 picoSiemens/picoFarad (pS/pF) wild-type; 0.61 ± 0.14 pS/pF Rad(-/-)), decay kinetics are faster, and I(Ca,L) activates at lower voltages (activation midpoint -7.2 ± 0.6 wild-type; -11.7 ± 0.9 Rad(-/-)) mimicking effects of ß-adrenergic receptor stimulation. Diastolic and twitch calcium are elevated in Rad(-/-) (F340/380: 1.03 diastolic and 0.35 twitch for wild-type; 1.47 diastolic and 0.736 twitch for Rad(-/-)) and sarcomere shortening is enhanced (4.31% wild-type; 14.13% Rad(-/-)) at lower pacing frequencies. Consequentially, frequency-dependence of Ca(2+) transients is less in Rad(-/-), and the frequency dependence of relaxation is also blunted. In isolated working hearts, similar results were obtained; chiefly, +dP/dt was elevated at baseline and developed pressure was relatively nonresponsive to acute ß-adrenergic receptor stimulation. In single cells, at subphysiological frequencies, nonstimulated calmodulin-dependent protein kinase-sensitive calcium release is observed. Remarkably, Rad(-/-) hearts did not show hypertrophic growth despite elevated levels of diastolic calcium. CONCLUSIONS: This study demonstrates that the depletion of Rad GTPase is equivalent to sympathomimetic ß-adrenergic receptor, without stimulating cardiac hypertrophy. Thus, targeting Rad GTPase is a novel potential therapeutic target for Ca(2+)-homeostasis-driven positive inotropic support of the heart.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Acoplamento Excitação-Contração , Deleção de Genes , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Proteínas ras/deficiência , Potenciais de Ação , Agonistas Adrenérgicos beta/farmacologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Estimulação Cardíaca Artificial , Cardiotônicos/farmacologia , Acoplamento Excitação-Contração/efeitos dos fármacos , Genótipo , Frequência Cardíaca , Cinética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Sarcômeros/metabolismo , Regulação para Cima , Pressão Ventricular , Proteínas ras/genética
4.
Am J Physiol Heart Circ Physiol ; 304(3): H455-64, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23203963

RESUMO

The L-type calcium channel (LTCC) provides trigger Ca(2+) for sarcoplasmic reticulum Ca-release, and LTCC function is influenced by interacting proteins including the LTCC distal COOH terminus (DCT) and calmodulin. DCT is proteolytically cleaved and reassociates with the LTCC complex to regulate calcium channel function. DCT reduces LTCC barium current (I(Ba,L)) in reconstituted channel complexes, yet the contribution of DCT to LTCC Ca(2+) current (I(Ca,L)) in cardiomyocyte systems is unexplored. This study tests the hypothesis that DCT attenuates cardiomyocyte I(Ca,L). We measured LTCC current and Ca(2+) transients with DCT coexpressed in murine cardiomyocytes. We also heterologously coexpressed DCT and Ca(V)1.2 constructs with truncations corresponding to the predicted proteolytic cleavage site, Ca(V)1.2Δ1801, and a shorter deletion corresponding to well-studied construct, Ca(V)1.2Δ1733. DCT inhibited I(Ba,L) in cardiomyocytes, and in human embryonic kidney (HEK) 293 cells expressing Ca(V)1.2Δ1801 and Ca(V)1.2Δ1733. Ca(2+)-CaM relieved DCT block in cardiomyocytes and HEK cells. The selective block of I(Ba,L) combined with Ca(2+)-CaM effects suggested that DCT-mediated blockade may be relieved under conditions of elevated Ca(2+). We therefore tested the hypothesis that DCT block is dynamic, increasing under relatively low Ca(2+), and show that DCT reduced diastolic Ca(2+) at low stimulation frequencies but spared high frequency Ca(2+) entry. DCT reduction of diastolic Ca(2+) and relief of block at high pacing frequencies and under conditions of supraphysiological bath Ca(2+) suggests that a physiological function of DCT is to increase the dynamic range of Ca(2+) transients in response to elevated pacing frequencies. Our data motivate the new hypothesis that DCT is a native reverse use-dependent inhibitor of LTCC current.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/fisiologia , Coração/fisiologia , Animais , Bário/farmacologia , Cálcio/farmacologia , Cálcio/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Estimulação Cardíaca Artificial , Fenômenos Eletrofisiológicos , Feminino , Células HEK293 , Humanos , Cinética , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Gravidez
5.
Channels (Austin) ; 6(3): 166-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22854599

RESUMO

RATIONALE: The L-type calcium channels (LTCC) are critical for maintaining Ca(2+)-homeostasis. In heterologous expression studies, the RGK-class of Ras-related G-proteins regulates LTCC function; however, the physiological relevance of RGK-LTCC interactions is untested. OBJECTIVE: In this report we test the hypothesis that the RGK protein, Rem, modulates native Ca(2+) current (I(Ca,L)) via LTCC in murine cardiomyocytes. METHODS AND RESULTS: Rem knockout mice (Rem(-/-)) were engineered, and I(Ca,L) and Ca(2+) -handling properties were assessed. Rem(-/-) ventricular cardiomyocytes displayed increased I(Ca,L) density. I(Ca,L) activation was shifted positive on the voltage axis, and ß-adrenergic stimulation normalized this shift compared with wild-type I(Ca,L). Current kinetics, steady-state inactivation, and facilitation was unaffected by Rem(-/-) . Cell shortening was not significantly different. Increased I(Ca,L) density in the absence of frank phenotypic differences motivated us to explore putative compensatory mechanisms. Despite the larger I(Ca,L) density, Rem(-/-) cardiomyocyte Ca(2+) twitch transient amplitude was significantly less than that compared with wild type. Computer simulations and immunoblot analysis suggests that relative dephosphorylation of Rem(-/-) LTCC can account for the paradoxical decrease of Ca(2+) transients. CONCLUSIONS: This is the first demonstration that loss of an RGK protein influences I(Ca,L) in vivo in cardiac myocytes.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/fisiologia , Potenciais de Ação/genética , Animais , Cálcio/metabolismo , Feminino , Ventrículos do Coração/citologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp
6.
Pflugers Arch ; 462(6): 795-809, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21927813

RESUMO

This study was conducted to identify molecular mechanisms which explain interventricular differences in myofilament function in experimental congestive heart failure (CHF). CHF was induced in rats by chronic aortic banding or myocardial infarction for 32-36 weeks. Right and left ventricular (RV, LV) myocytes were mechanically isolated, triton-skinned, and attached to a force transducer and motor arm. Myofilament force-[Ca(2+)] relations assessed maximal Ca(2+)-saturated force (F (max)) and the [Ca(2+)] at 50% of F (max) (EC(50)). Myofilament protein phosphorylation was determined via ProQ diamond phospho-staining. Protein kinase C (PKC)-α expression/activation and site-specific phosphorylation of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were measured via immunoblotting. Relative to controls, failing RV myocytes displayed a ~45% decrease in F (max) with no change in EC(50), whereas failing LV myocytes displayed a ~45% decrease in F (max) and ~50% increase in EC(50). Failing LV myofilaments were less Ca(2+)-sensitive (37% increase in EC(50)) than failing RV myofilaments. Expression and activation of PKC-α was increased twofold in failing RV myocardium and relative to the RV, PKC-α was twofold higher in the failing LV, while PKC-ß expression was unchanged by CHF. PKC-α-dependent phosphorylation and PP1-mediated dephosphorylation of failing RV myofilaments increased EC(50) and increased F (max), respectively. Phosphorylation of cTnI and cTnT was greater in failing LV myofilaments than in failing RV myofilaments. RV myofilament function is depressed in experimental CHF in association with increased PKC-α signaling and myofilament protein phosphorylation. Furthermore, myofilament dysfunction is greater in the LV compared to the RV due in part to increased PKC-α activation and phosphorylation of cTnI and cTnT.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Animais , Cálcio/metabolismo , Miosinas Cardíacas/metabolismo , Feminino , Humanos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Cadeias Leves de Miosina/metabolismo , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Proteína Quinase C-alfa/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Troponina I/metabolismo , Troponina T/metabolismo
7.
J Biol Chem ; 286(1): 530-41, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21056973

RESUMO

Efficient and specific phosphorylation of PKA substrates, elicited in response to ß-adrenergic stimulation, require spatially confined pools of PKA anchored in proximity of its substrates. PKA-dependent phosphorylation of cardiac sarcomeric proteins has been the subject of intense investigations. Yet, the identity, composition, and function of PKA complexes at the sarcomeres have remained elusive. Here we report the identification and characterization of a novel sarcomeric AKAP (A-kinase anchoring protein), cardiac troponin T (cTnT). Using yeast two-hybrid technology in screening two adult human heart cDNA libraries, we identified the regulatory subunit of PKA as interacting with human cTnT bait. Immunoprecipitation studies show that cTnT is a dual specificity AKAP, interacting with both PKA-regulatory subunits type I and II. The disruptor peptide Ht31, but not Ht31P (control), abolished cTnT/PKA-R association. Truncations and point mutations identified an amphipathic helix domain in cTnT as the PKA binding site. This was confirmed by a peptide SPOT assay in the presence of Ht31 or Ht31P (control). Gelsolin-dependent removal of thin filament proteins also reduced myofilament-bound PKA-type II. Using a cTn exchange procedure that substitutes the endogenous cTn complex with a recombinant cTn complex we show that PKA-type II is troponin-bound in the myofilament lattice. Displacement of PKA-cTnT complexes correlates with a significant decrease in myofibrillar PKA activity. Taken together, our data propose a novel role for cTnT as a dual-specificity sarcomeric AKAP.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Troponina T/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína Quinase Tipo II Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Sarcômeros/metabolismo , Especificidade por Substrato , Troponina T/química , Técnicas do Sistema de Duplo-Híbrido
8.
J Mol Cell Cardiol ; 48(5): 934-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20079745

RESUMO

Ca(2+) desensitization of myofilaments is indicated as a primary mechanism for the pathogenesis of familial dilated cardiomyopathy (DCM) associated with the deletion of lysine 210 (DeltaK210) in cardiac troponin T (cTnT). DeltaK210 knock-in mice closely recapitulate the clinical phenotypes documented in patients with this mutation. Considerable evidence supports the proposition that phosphorylation of cardiac sarcomeric proteins is a key modulator of function and may exacerbate the effect of the deletion. In this study we investigate the impact of K210 deletion on phosphorylation propensity of sarcomeric proteins. Analysis of cardiac myofibrils isolated from DeltaK210 hearts identified a decrease in phosphorylation of cTnI (46%), cTnT (30%) and MyBP-C (32%) compared with wild-type controls. Interestingly, immunoblot analyses with phospho-specific antibodies show augmented phosphorylation of cTnT-Thr(203) (28%) and decreased phosphorylation of cTnI-Ser(23/24) (41%) in mutant myocardium. In vitro kinase assays indicate that DeltaK210 increases phosphorylation propensity of cTnT-Thr(203) three-fold, without changing cTnI-Ser(23/24) phosphorylation. Molecular modeling of cTnT-DeltaK210 structure reveals changes in the electrostatic environment of cTnT helix (residues 203-224) that lead to a more basic environment around Thr(203), which may explain the enhanced PKC-dependent phosphorylation. In addition, yeast two-hybrid assays indicate that cTnT-DeltaK210 binds stronger to cTnI compared with cTnT-wt. Collectively, our observations suggest that cardiomyopathy-causing DeltaK210 has far-reaching effects influencing cTnI-cTnT binding and posttranslational modifications of key sarcomeric proteins.


Assuntos
Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Sarcômeros/metabolismo , Troponina T/genética , Animais , Proteínas de Transporte/metabolismo , Humanos , Immunoblotting , Camundongos , Mutagênese Sítio-Dirigida , Miofibrilas/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Proteína Quinase C-alfa/metabolismo , Troponina I/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
J Biol Chem ; 283(33): 22680-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18550549

RESUMO

Our study identifies tyrosine phosphorylation as a novel protein kinase Cdelta (PKCdelta) activation mechanism that modifies PKCdelta-dependent phosphorylation of cardiac troponin I (cTnI), a myofilament regulatory protein. PKCdelta phosphorylates cTnI at Ser23/Ser24 when activated by lipid cofactors; Src phosphorylates PKCdelta at Tyr311 and Tyr332 leading to enhanced PKCdelta autophosphorylation at Thr505 (its activation loop) and PKCdelta-dependent cTnI phosphorylation at both Ser23/Ser24 and Thr144. The Src-dependent acquisition of cTnI-Thr144 kinase activity is abrogated by Y311F or T505A substitutions. Treatment of detergent-extracted single cardiomyocytes with lipid-activated PKCdelta induces depressed tension at submaximum but not maximum [Ca2+] as expected for cTnI-Ser23/Ser24 phosphorylation. Treatment of myocytes with Src-activated PKCdelta leads to depressed maximum tension and cross-bridge kinetics, attributable to a dominant effect of cTnI-Thr144 phosphorylation. Our data implicate PKCdelta-Tyr311/Thr505 phosphorylation as dynamically regulated modifications that alter PKCdelta enzymology and allow for stimulus-specific control of cardiac mechanics during growth factor stimulation and oxidative stress.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C-delta/metabolismo , Troponina I/metabolismo , Tirosina/metabolismo , Animais , Células Cultivadas , Genes Reporter , Ventrículos do Coração/metabolismo , Masculino , Mutagênese , Miócitos Cardíacos/citologia , Fosforilação , Fosfotirosina/metabolismo , Proteína Quinase C-delta/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo
10.
Mol Endocrinol ; 18(4): 968-78, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14726491

RESUMO

Previously, we reported that a liganded LH receptor (LHR) is capable of activating itself (cis-activation) and other nonliganded LHRs to induce cAMP (trans-activation). Trans-activation of the LHR raises two crucial questions. Is trans-activation unique to LHR or common to other G protein-coupled receptors? Does trans-activation stimulate phospholipase Cbeta as it does adenylyl cyclase? To address these questions, two types of novel FSH receptors (FSHRs) were constructed, one defective in hormone binding and the other defective in signal generation. The FSHR, a G protein-coupled receptor, comprises two major domains, the N-terminal extracellular exodomain that binds the hormone and the membrane-associated endodomain that generates the hormone signals. For signal defective receptors, the exodomain was attached to glycosyl phosphatidylinositol (ExoGPI) or the transmembrane domain of CD8 immune receptor (ExoCD). ExoGPI and ExoCD can trans-activate another nonliganded FSH. Surprisingly, the trans-activation generates a signal to activate either adenylyl cyclase or phospholipase Cbeta, but not both. These results indicate that trans-activation in these mutant receptors is selective and limited in signal generation, thus providing new approaches to investigating the generation of different hormone signals and a novel means to selectively generate a particular hormone signal. Our data also suggest that the FSHR's exodomain could not trans-activate LHR.


Assuntos
Adenilil Ciclases/metabolismo , Isoenzimas/metabolismo , Receptores do FSH/metabolismo , Fosfolipases Tipo C/metabolismo , AMP Cíclico/metabolismo , Técnicas de Transferência de Genes , Humanos , Radioisótopos do Iodo/metabolismo , Mutação , Fosfolipase C beta , Receptores do FSH/genética
11.
J Biol Chem ; 277(51): 50165-75, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12374801

RESUMO

The human follicle-stimulating hormone (FSH) receptor consists of two distinct domains of approximately 330 amino acids, the N-terminal extracellular exodomain and membrane-associated endodomain including three exoloops and seven transmembrane helices. The exodomain binds the hormone with high affinity, and the resulting hormone/exodomain complex modulates the endodomain where receptor activation occurs. It has been an enigma whether the hormone interacts with the endodomain. In a step to address the question, exoloop 3 of (580)KVPLITVSKAK(590) was examined by Ala scan, multiple substitution, assays for hormone binding, cAMP and inositol phosphate (IP) induction, and photoaffinity labeling. We present the evidence for the interaction of FSH and exoloop 3. A peptide mimic of exoloop 3 specifically and saturably photoaffinity-labels FSH alpha but not FSH beta. This is in contrast to photoaffinity labeling of FSH beta by the peptide mimic of the N-terminal region of the receptor. Leu(583) and Ile(584) are crucial for the interaction of FSH and exoloop 3. Substitutions of these two residues enhanced the hormone binding affinity. This is due to the loss of the original side chains but not the introduction of new side chains. The Leu(583) and Ile(584) side chains appear to project in opposite directions. Ile(584) appears to be so specific and to require flexibility and stereo specificity so that no other amino acids can fit into its place. Leu(583) is less specific. The improvement in hormone binding by substitutions was offset by the severe impairment of signal generation of cAMP and/or inositol phosphate. For example, the Phe or Tyr substitution of Leu(583) improved the hormone binding and cAMP induction but impaired IP induction. On the other hand, the substitutions for Ile(584) and Lys(590) abolished the cAMP and IP induction. Our results open a logical question whether Leu(583), Ile(584), and Lys(590) interact with the exodomain and/or the hormone. The answers will provide new insights into the mechanisms of hormone binding and signal generation.


Assuntos
Hormônio Foliculoestimulante/química , Receptores do FSH/química , Alanina/química , Sequência de Aminoácidos , Animais , Ligação Competitiva , Linhagem Celular , AMP Cíclico/metabolismo , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Hormônio Foliculoestimulante/metabolismo , Humanos , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Cinética , Leucina/química , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Prolina/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores do FSH/metabolismo , Transdução de Sinais , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA