Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Stat Methods Med Res ; 33(2): 256-272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196243

RESUMO

Dynamically predicting patient survival probabilities using longitudinal measurements has become of great importance with routine data collection becoming more common. Many existing models utilize a multi-step landmarking approach for this problem, mostly due to its ease of use and versatility but unfortunately most fail to do so appropriately. In this article we make use of multivariate functional principal component analysis to summarize the available longitudinal information, and employ a Cox proportional hazards model for prediction. Additionally, we consider a centred functional principal component analysis procedure in an attempt to remove the natural variation incurred by the difference in age of the considered subjects. We formalize the difference between a 'relaxed' landmarking approach where only validation data is landmarked and a 'strict' landmarking approach where both the training and validation data are landmarked. We show that a relaxed landmarking approach fails to effectively use the information contained in the longitudinal outcomes, thereby producing substantially worse prediction accuracy than a strict landmarking approach.


Assuntos
Modelos de Riscos Proporcionais , Humanos , Probabilidade
2.
Clin Proteomics ; 20(1): 23, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308827

RESUMO

BACKGROUND: Molecular components in blood, such as proteins, are used as biomarkers to detect or predict disease states, guide clinical interventions and aid in the development of therapies. While multiplexing proteomics methods promote discovery of such biomarkers, their translation to clinical use is difficult due to the lack of substantial evidence regarding their reliability as quantifiable indicators of disease state or outcome. To overcome this challenge, a novel orthogonal strategy was developed and used to assess the reliability of biomarkers and analytically corroborate already identified serum biomarkers for Duchenne muscular dystrophy (DMD). DMD is a monogenic incurable disease characterized by progressive muscle damage that currently lacks reliable and specific disease monitoring tools. METHODS: Two technological platforms are used to detect and quantify the biomarkers in 72 longitudinally collected serum samples from DMD patients at 3 to 5 timepoints. Quantification of the biomarkers is achieved by detection of the same biomarker fragment either through interaction with validated antibodies in immuno-assays or through quantification of peptides by Parallel Reaction Monitoring Mass Spectrometry assay (PRM-MS). RESULTS: Five, out of ten biomarkers previously identified by affinity-based proteomics methods, were confirmed to be associated with DMD using the mass spectrometry-based method. Two biomarkers, carbonic anhydrase III and lactate dehydrogenase B, were quantified with two independent methods, sandwich immunoassays and PRM-MS, with Pearson correlations of 0.92 and 0.946 respectively. The median concentrations of CA3 and LDHB in DMD patients was elevated in comparison to those in healthy individuals by 35- and 3-fold, respectively. Levels of CA3 vary between 10.26 and 0.36 ng/ml in DMD patients whereas those of LDHB vary between 15.1 and 0.8 ng/ml. CONCLUSIONS: These results demonstrate that orthogonal assays can be used to assess the analytical reliability of biomarker quantification assays, providing a means to facilitate the translation of biomarkers to clinical practice. This strategy also warrants the development of the most relevant biomarkers, markers that can be reliably quantified with different proteomics methods.

3.
PLoS One ; 18(3): e0283869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000843

RESUMO

Duchenne muscular dystrophy (DMD) is caused by genetic mutations leading to lack of dystrophin in skeletal muscle. A better understanding of how objective biomarkers for DMD vary across subjects and over time is needed to model disease progression and response to therapy more effectively, both in pre-clinical and clinical research. We present an in-depth characterization of disease progression in 3 murine models of DMD by multiomic analysis of longitudinal trajectories between 6 and 30 weeks of age. Integration of RNA-seq, mass spectrometry-based metabolomic and lipidomic data obtained in muscle and blood samples by Multi-Omics Factor Analysis (MOFA) led to the identification of 8 latent factors that explained 78.8% of the variance in the multiomic dataset. Latent factors could discriminate dystrophic and healthy mice, as well as different time-points. MOFA enabled to connect the gene expression signature in dystrophic muscles, characterized by pro-fibrotic and energy metabolism alterations, to inflammation and lipid signatures in blood. Our results show that omic observations in blood can be directly related to skeletal muscle pathology in dystrophic muscle.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Camundongos Endogâmicos mdx , Multiômica , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Progressão da Doença , Modelos Animais de Doenças
4.
Neurology ; 100(9): e975-e984, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36849458

RESUMO

BACKGROUND AND OBJECTIVES: The slow and variable disease progression of Becker muscular dystrophy (BMD) urges the development of biomarkers to facilitate clinical trials. We explored changes in 3 muscle-enriched biomarkers in serum of patients with BMD over 4-year time and studied associations with disease severity, disease progression, and dystrophin levels in BMD. METHODS: We quantitatively measured creatine kinase (CK) using the International Federation of Clinical Chemistry reference method, creatine/creatinineratio (Cr/Crn) using liquid chromatography-tandem mass spectrometry, and myostatin with ELISA in serum and assessed functional performance using the North Star Ambulatory Assessment (NSAA), 10-meter run velocity (TMRv), 6-Minute Walking Test (6MWT), and forced vital capacity in a 4-year prospective natural history study. Dystrophin levels were quantified in the tibialis anterior muscle using capillary Western immunoassay. The correlation between biomarkers, age, functional performance, mean annual change, and prediction of concurrent functional performance was analyzed using linear mixed models. RESULTS: Thirty-four patients with 106 visits were included. Eight patients were nonambulant at baseline. Cr/Crn and myostatin were highly patient specific (intraclass correlation coefficient for both = 0.960). Cr/Crn was strongly negatively correlated, whereas myostatin was strongly positively correlated with the NSAA, TMRv, and 6MWT (Cr/Crn rho = -0.869 to -0.801 and myostatin rho = 0.792 to 0.842, all p < 0.001). CK showed a negative association with age (p = 0.0002) but was not associated with patients' performance. Cr/Crn and myostatin correlated moderately with the average annual change of the 6MWT (rho = -0.532 and 0.555, p = 0.02). Dystrophin levels did not correlate with the selected biomarkers nor with performance. Cr/Crn, myostatin, and age could explain up to 75% of the variance of concurrent functional performance of the NSAA, TMRv, and 6MWT. DISCUSSION: Both Cr/Crn and myostatin could potentially serve as monitoring biomarkers in BMD, as higher Cr/Crn and lower myostatin were associated with lower motor performance and predictive of concurrent functional performance when combined with age. Future studies are needed to more precisely determine the context of use of these biomarkers.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofina , Creatina , Creatinina , Miostatina , Estudos Prospectivos , Biomarcadores , Creatina Quinase , Progressão da Doença
5.
Stat Med ; 40(27): 6178-6196, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34464990

RESUMO

Longitudinal and high-dimensional measurements have become increasingly common in biomedical research. However, methods to predict survival outcomes using covariates that are both longitudinal and high-dimensional are currently missing. In this article, we propose penalized regression calibration (PRC), a method that can be employed to predict survival in such situations. PRC comprises three modeling steps: First, the trajectories described by the longitudinal predictors are flexibly modeled through the specification of multivariate mixed effects models. Second, subject-specific summaries of the longitudinal trajectories are derived from the fitted mixed models. Third, the time to event outcome is predicted using the subject-specific summaries as covariates in a penalized Cox model. To ensure a proper internal validation of the fitted PRC models, we furthermore develop a cluster bootstrap optimism correction procedure that allows to correct for the optimistic bias of apparent measures of predictiveness. PRC and the CBOCP are implemented in the R package pencal, available from CRAN. After studying the behavior of PRC via simulations, we conclude by illustrating an application of PRC to data from an observational study that involved patients affected by Duchenne muscular dystrophy, where the goal is predict time to loss of ambulation using longitudinal blood biomarkers.


Assuntos
Calibragem , Viés , Biomarcadores , Humanos , Estudos Longitudinais , Modelos de Riscos Proporcionais
6.
EMBO Mol Med ; 13(4): e13328, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33751844

RESUMO

DMD is a rare disorder characterized by progressive muscle degeneration and premature death. Therapy development is delayed by difficulties to monitor efficacy non-invasively in clinical trials. In this study, we used RNA-sequencing to describe the pathophysiological changes in skeletal muscle of 3 dystrophic mouse models. We show how dystrophic changes in muscle are reflected in blood by analyzing paired muscle and blood samples. Analysis of repeated blood measurements followed the dystrophic signature at five equally spaced time points over a period of seven months. Treatment with two antisense drugs harboring different levels of dystrophin recovery identified genes associated with safety and efficacy. Evaluation of the blood gene expression in a cohort of DMD patients enabled the comparison between preclinical models and patients, and the identification of genes associated with physical performance, treatment with corticosteroids and body measures. The presented results provide evidence that blood RNA-sequencing can serve as a tool to evaluate disease progression in dystrophic mice and patients, as well as to monitor response to (dystrophin-restoring) therapies in preclinical drug development and in clinical trials.


Assuntos
Distrofia Muscular de Duchenne , Animais , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Transcriptoma
7.
Pharmacol Res ; 159: 104999, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535224

RESUMO

Rimeporide, a first-in-class sodium/proton exchanger Type 1 inhibitor (NHE-1 inhibitor) is repositioned by EspeRare for patients with Duchenne Muscular Dystrophy (DMD). Historically, NHE-1 inhibitors were developed for cardiac therapeutic interventions. There is considerable overlap in the pathophysiological mechanisms in Congestive Heart Failure (CHF) and in cardiomyopathy in DMD, therefore NHE-1 inhibition could be a promising pharmacological approach to the cardiac dysfunctions observed in DMD. Extensive preclinical data was collected in various animal models including dystrophin-deficient (mdx) mice to characterise Rimeporide's anti-fibrotic and anti-inflammatory properties and there is evidence that NHE-1 inhibitors could play a significant role in modifying DMD cardiac and also skeletal pathologies, as the NHE-1 isoform is ubiquitous. We report here the first study with Rimeporide in DMD patients. This 4-week treatment, open label phase Ib, multiple oral ascending dose study, enrolled 20 ambulant boys with DMD (6-11 years), with outcomes including safety, pharmacokinetic (PK) and pharmacodynamic (PD) biomarkers. Rimeporide was safe and well-tolerated at all doses. PK evaluations showed that Rimeporide was well absorbed orally reaching pharmacological concentrations from the lowest dose, with exposure increasing linearly with dose and with no evidence of accumulation upon repeated dosing. Exploratory PD biomarkers showed positive effect upon a 4-week treatment, supporting its therapeutic potential in patients with DMD, primarily as a cardioprotective treatment, and provide rationale for further efficacy studies.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Fármacos Neuromusculares/administração & dosagem , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Administração Oral , Criança , Esquema de Medicação , Europa (Continente) , Humanos , Masculino , Modelos Biológicos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Fármacos Neuromusculares/efeitos adversos , Fármacos Neuromusculares/farmacocinética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Resultado do Tratamento
8.
J Neuromuscul Dis ; 7(3): 231-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390640

RESUMO

BACKGROUND: Duchenne Muscular Dystrophy is a severe, incurable disorder caused by mutations in the dystrophin gene. The disease is characterized by decreased muscle function, impaired muscle regeneration and increased inflammation. In a clinical context, muscle deterioration, is evaluated using physical tests and analysis of muscle biopsies, which fail to accurately monitor the disease progression. OBJECTIVES: This study aims to confirm and asses the value of blood protein biomarkers as disease progression markers using one of the largest longitudinal collection of samples. METHODS: A total of 560 samples, both serum and plasma, collected at three clinical sites are analyzed using a suspension bead array platform to assess 118 proteins targeted by 250 antibodies in microliter amount of samples. RESULTS: Nine proteins are confirmed as disease progression biomarkers in both plasma and serum. Abundance of these biomarkers decreases as the disease progresses but follows different trajectories. While carbonic anhydrase 3, microtubule associated protein 4 and collagen type I alpha 1 chain decline rather constantly over time, myosin light chain 3, electron transfer flavoprotein A, troponin T, malate dehydrogenase 2, lactate dehydrogenase B and nestin plateaus in early teens. Electron transfer flavoprotein A, correlates with the outcome of 6-minutes-walking-test whereas malate dehydrogenase 2 together with myosin light chain 3, carbonic anhydrase 3 and nestin correlate with respiratory capacity. CONCLUSIONS: Nine biomarkers have been identified that correlate with disease milestones, functional tests and respiratory capacity. Together these biomarkers recapitulate different stages of the disorder that, if validated can improve disease progression monitoring.


Assuntos
Progressão da Doença , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/fisiopatologia , Proteômica , Adolescente , Adulto , Biomarcadores/sangue , Cadeia alfa 1 do Colágeno Tipo I , Humanos , Estudos Longitudinais , Masculino , Adulto Jovem
9.
Hum Mol Genet ; 29(5): 745-755, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32025735

RESUMO

Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and plasma have been reported in pre-clinical and clinical cross-sectional comparisons. We present here a 7-month longitudinal study comparing plasma metabolomic data in wild-type and mdx mice. A mass spectrometry approach was used to study metabolites in up to five time points per mouse at 6, 12, 18, 24 and 30 weeks of age, providing an unprecedented in depth view of disease trajectories. A total of 106 metabolites were studied. We report a signature of 31 metabolites able to discriminate between healthy and disease at various stages of the disease, covering the acute phase of muscle degeneration and regeneration up to the deteriorating phase. We show how metabolites related to energy production and chachexia (e.g. glutamine) are affected in mdx mice plasma over time. We further show how the signature is connected to molecular targets of nutraceuticals and pharmaceutical compounds currently in development as well as to the nitric oxide synthase pathway (e.g. arginine and citrulline). Finally, we evaluate the signature in a second longitudinal study in three independent mouse models carrying 0, 1 or 2 functional copies of the dystrophin paralog utrophin. In conclusion, we report an in-depth metabolomic signature covering previously identified associations and new associations, which enables drug developers to peripherally assess the effect of drugs on the metabolic status of dystrophic mice.


Assuntos
Modelos Animais de Doenças , Metaboloma , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/patologia , Animais , Estudos Transversais , Progressão da Doença , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos mdx
10.
J Cachexia Sarcopenia Muscle ; 11(2): 505-517, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31881125

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal disease for which no cure is available. Clinical trials have shown to be largely underpowered due to inter-individual variability and noisy outcome measures. The availability of biomarkers able to anticipate clinical benefit is highly needed to improve clinical trial design and facilitate drug development. METHODS: In this study, we aimed to appraise the value of protein biomarkers to predict prognosis and monitor disease progression or treatment outcome in patients affected by DMD. We collected clinical data and 303 blood samples from 157 DMD patients in three clinical centres; 78 patients contributed multiple blood samples over time, with a median follow-up time of 2 years. We employed linear mixed models to identify biomarkers that are associated with disease progression, wheelchair dependency, and treatment with corticosteroids and performed survival analysis to find biomarkers whose levels are associated with time to loss of ambulation. RESULTS: Our analysis led to the identification of 21 proteins whose levels significantly decrease with age and nine proteins whose levels significantly increase. Seven of these proteins are also differentially expressed in non-ambulant patients, and three proteins are differentially expressed in patients treated with glucocorticosteroids. Treatment with corticosteroids was found to partly counteract the effect of disease progression on two biomarkers, namely, malate dehydrogenase 2 (MDH2, P = 0.0003) and ankyrin repeat domain 2 (P = 0.0005); however, patients treated with corticosteroids experienced a further reduction on collagen 1 serum levels (P = 0.0003), especially following administration of deflazacort. A time to event analysis allowed to further support the use of MDH2 as a prognostic biomarker as it was associated with an increased risk of wheelchair dependence (P = 0.0003). The obtained data support the prospective evaluation of the identified biomarkers in natural history and clinical trials as exploratory biomarkers. CONCLUSIONS: We identified a number of serum biomarkers associated with disease progression, loss of ambulation, and treatment with corticosteroids. The identified biomarkers are promising candidate prognostic and surrogate biomarkers, which may support drug developers if confirmed in prospective studies. The serum levels of MDH2 are of particular interest, as they correlate with disease stage and response to treatment with corticosteroids, and are also associated with the risk of wheelchair dependency and pulmonary function.


Assuntos
Biomarcadores/sangue , Detecção Precoce de Câncer/métodos , Malato Desidrogenase/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Distrofia Muscular de Duchenne , Prognóstico , Adulto Jovem
11.
BMC Bioinformatics ; 17(1): 352, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27597310

RESUMO

BACKGROUND: Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. RESULTS: We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. CONCLUSIONS: NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).


Assuntos
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Software , Simulação por Computador , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genes Fúngicos , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA