Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 11(1): 6, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34985506

RESUMO

Purpose: Comprehensive genetic testing for inherited retinal dystrophy (IRD) is challenged by difficult-to-sequence genomic regions, which are often mutational hotspots, such as RPGR ORF15. The purpose of this study was to evaluate the diagnostic contribution of RPGR variants in an unselected IRD patient cohort referred for testing in a clinical diagnostic laboratory. Methods: A total of 5201 consecutive patients were analyzed with a clinically validated next-generation sequencing (NGS)-based assay, including the difficult-to-sequence RPGR ORF15 region. Copy number variant (CNV) detection from NGS data was included. Variant interpretation was performed per the American College of Medical Genetics and Genomics guidelines. Results: A confirmed molecular diagnosis in RPGR was found in 4.5% of patients, 24.0% of whom were females. Variants in ORF15 accounted for 74% of the diagnoses; 29% of the diagnostic variants were in the most difficult-to-sequence central region of ORF15 (c.2470-3230). Truncating variants made up the majority (91%) of the diagnostic variants. CNVs explained 2% of the diagnostic cases, of which 80% were one- or two-exon deletions outside of ORF15. Conclusions: Our findings indicate that high-throughput, clinically validated NGS-based testing covering the difficult-to-sequence region of ORF15, in combination with high-resolution CNV detection, can help to maximize the diagnostic yield for patients with IRD. Translational Relevance: These results demonstrate an accurate and scalable method for the detection of RPGR-related variants, including the difficult-to-sequence ORF15 hotspot, which is relevant given current and emerging therapeutic opportunities.


Assuntos
Proteínas do Olho , Distrofias Retinianas , Éxons , Proteínas do Olho/genética , Feminino , Humanos , Linhagem , Prevalência , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/epidemiologia , Distrofias Retinianas/genética
2.
Front Genet ; 12: 786705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899865

RESUMO

Background: Familial dilated cardiomyopathy (DCM) is a monogenic disorder typically inherited in an autosomal dominant pattern. We have identified two Finnish families with familial cardiomyopathy that is not explained by a variant in any previously known cardiomyopathy gene. We describe the cardiac phenotype related to homozygous truncating GCOM1 variants. Methods and Results: This study included two probands and their relatives. All the participants are of Finnish ethnicity. Whole-exome sequencing was used to test the probands; bi-directional Sanger sequencing was used to identify the GCOM1 variants in probands' family members. Clinical evaluation was performed, medical records and death certificates were obtained. Immunohistochemical analysis of myocardial samples was conducted. A homozygous GCOM1 variant was identified altogether in six individuals, all considered to be affected. None of the nine heterozygous family members fulfilled any cardiomyopathy criteria. Heart failure was the leading clinical feature, and the patients may have had a tendency for atrial arrhythmias. Conclusions: This study demonstrates the significance of GCOM1 variants as a cause of human cardiomyopathy and highlights the importance of searching for new candidate genes when targeted gene panels do not yield a positive outcome.

3.
ISME J ; 8(10): 2131-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25105905

RESUMO

Restoration of polluted sites via in situ bioremediation relies heavily on the indigenous microbes and their activities. Spatial heterogeneity of microbial populations, contaminants and soil chemical parameters on such sites is a major hurdle in optimizing and implementing an appropriate bioremediation regime. We performed a grid-based sampling of an aged creosote-contaminated site followed by geostatistical modelling to illustrate the spatial patterns of microbial diversity and activity and to relate these patterns to the distribution of pollutants. Spatial distribution of bacterial groups unveiled patterns of niche differentiation regulated by patchy distribution of pollutants and an east-to-west pH gradient at the studied site. Proteobacteria clearly dominated in the hot spots of creosote pollution, whereas the abundance of Actinobacteria, TM7 and Planctomycetes was considerably reduced from the hot spots. The pH preferences of proteobacterial groups dominating in pollution could be recognized by examining the order and family-level responses. Acidobacterial classes came across as generalists in hydrocarbon pollution whose spatial distribution seemed to be regulated solely by the pH gradient. Although the community evenness decreased in the heavily polluted zones, basal respiration and fluorescein diacetate hydrolysis rates were higher, indicating the adaptation of specific indigenous microbial populations to hydrocarbon pollution. Combining the information from the kriged maps of microbial and soil chemistry data provided a comprehensive understanding of the long-term impacts of creosote pollution on the subsurface microbial communities. This study also highlighted the prospect of interpreting taxa-specific spatial patterns and applying them as indicators or proxies for monitoring polluted sites.


Assuntos
Bactérias/classificação , Biodiversidade , Creosoto , Microbiologia do Solo , Poluentes do Solo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Modelos Estatísticos , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA