Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34828258

RESUMO

Trehalose-6-phosphate phosphatase (TPP) genes take part in trehalose metabolism and also in stress tolerance, which has been well documented in many species but poorly understood in wheat. The present research has identified a family of 31 TPP genes in Triticum aestivum L. through homology searches and classified them into five clades by phylogenetic tree analysis, providing evidence of an evolutionary status with Hordeum vulgare, Brachypodium distachyon and Oryza sativa. The exon-intron distribution revealed a discrete evolutionary history and projected possible gene duplication occurrences. Furthermore, different computational approaches were used to analyze the physical and chemical properties, conserved domains and motifs, subcellular and chromosomal localization, and three-dimensional (3-D) protein structures. Cis-regulatory elements (CREs) analysis predicted that TaTPP promoters consist of CREs related to plant growth and development, hormones, and stress. Transcriptional analysis revealed that the transcription levels of TaTPPs were variable in different developmental stages and organs. In addition, qRT-PCR analysis showed that different TaTPPs were induced under salt and drought stresses and during leaf senescence. Therefore, the findings of the present study give fundamental genomic information and possible biological functions of the TaTPP gene family in wheat and will provide the path for a better understanding of TaTPPs involvement in wheat developmental processes, stress tolerance, and leaf senescence.


Assuntos
Monoéster Fosfórico Hidrolases/genética , Senescência Vegetal/genética , Estresse Fisiológico/genética , Triticum , Adaptação Fisiológica/genética , Biologia Computacional , Simulação por Computador , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Monoéster Fosfórico Hidrolases/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Trealose/metabolismo , Triticum/genética , Triticum/metabolismo
2.
J Environ Manage ; 297: 113250, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274764

RESUMO

A field experiment was carried out to evaluate the effects of different biochars on grain yield and phytoavailability and uptake of macro- and micro-nutrients by rice and wheat grown in a paddy soil in a rotation. Soil was treated with i) maize raw (un-washed) biochar (MRB), ii) maize water-washed biochar (MWB), iii) wheat raw biochar (WRB) or iv) wheat water-washed biochar (WWB) and untreated soil was used as control (CF). Inorganic fertilizers were applied to all soils while biochar treated soils received 20 ton ha-1 of designated biochar before rice cultivation in rice-wheat rotation. The WRB significantly (P < 0.05) increased rice grain yield and straw by up to 49%, compared to the CF. Biochar addition, particularly WRB, significantly increased the availability of N, P, K and their content in the grain (26-37%) and straw (22-37%) of rice and wheat. Also, the availability and grain content of Fe, Mn, Zn, and Cu increased significantly after biochar addition, particularly after the WRB, due to WRB water dissolved C acting as a carrier for micronutrients in soil and plant. However, the water-washing process altered biochar properties, particularly the water extractable C, which decreased its efficiency. Both wheat- and maize-derived biochars, particularly the WRB, are recommended to improve nutrients availability and to improve grain yield in the rice-wheat rotation agro-ecosystem. These results shed light on the importance of crop straw transformation into an important source for soil C and nutrients necessary for sustainable management of wheat-rice agro-ecosystem. However, with the current and future alternative energy demands, the decision on using crop biomass for soil conservation or for bioenergy becomes a challenge reliant on regulatory and policy frameworks.


Assuntos
Oryza , Poluentes do Solo , Carvão Vegetal , Ecossistema , Nutrientes , Solo , Poluentes do Solo/análise , Triticum , Água , Zea mays
3.
Environ Pollut ; 277: 116789, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640810

RESUMO

Microorganism-assisted phytoremediation is being developed as an efficient green approach for management of toxic metals contaminated soils and mitigating the potential human health risk. The capability of plant growth promoting Actinobacteria (Streptomyces pactum Act12 - ACT) and Firmicutes (Bacillus subtilis and Bacillus licheniformis - BC) in mono- and co-applications (consortium) to improve soil properties and enhance phytoextraction of Cd, Cu, Pb, and Zn by Brassica juncea (L.) Czern. was studied here for the first time in both incubation and pot experiments. The predominant microbial taxa were Proteobacteria, Actinobacteria and Bacteroidetes, which are important lineages for maintaining soil ecological activities. The consortium improved the levels of alkaline phosphatase, ß-D glucosidase, dehydrogenase, sucrase and urease (up to 33%) as compared to the control. The bacterial inoculum also triggered increases in plant fresh weight, pigments and antioxidants. The consortium application enhanced significantly the metals bioavailability (DTPA extractable) and mobilization (acid soluble fraction), relative to those in the unamended soil; therefore, significantly improved the metals uptake by roots and shoots. The phytoextraction indices indicated that B. juncea is an efficient accumulator of Cd and Zn. Overall, co-application of ACT and BC can be an effective solution for enhancing phytoremediation potential and thus reducing the potential human health risk from smelter-contaminated soil. Field studies may further credit the understanding of consortium interactions with soil and different plant systems in remediating multi-metal contaminated environments.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Humanos , Metais Pesados/análise , Mostardeira , Solo , Poluentes do Solo/análise , Streptomyces
4.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562098

RESUMO

Air pollution has been a long-term problem, especially in urban areas, that eventually accelerates the formation of acid rain (AR), but recently it has emerged as a serious environmental issue worldwide owing to industrial and economic growth, and it is also considered a major abiotic stress to agriculture. Evidence showed that AR exerts harmful effects in plants, especially on growth, photosynthetic activities, antioxidant activities and molecular changes. Effectiveness of several bio-regulators has been tested so far to arbitrate various physiological, biochemical and molecular processes in plants under different diverse sorts of environmental stresses. In the current review, we showed that silicon (tetravalent metalloid and semi-conductor), glutathione (free thiol tripeptide) and melatonin (an indoleamine low molecular weight molecule) act as influential growth regulators, bio-stimulators and antioxidants, which improve plant growth potential, photosynthesis spontaneity, redox-balance and the antioxidant defense system through quenching of reactive oxygen species (ROS) directly and/or indirectly under AR stress conditions. However, earlier research findings, together with current progresses, would facilitate the future research advancements as well as the adoption of new approaches in attenuating the consequence of AR stress on crops, and might have prospective repercussions in escalating crop farming where AR is a restraining factor.


Assuntos
Chuva Ácida/efeitos adversos , Glutationa/farmacologia , Melatonina/farmacologia , Plantas/efeitos dos fármacos , Silício/farmacologia , Estresse Fisiológico/efeitos dos fármacos
5.
Molecules ; 25(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570970

RESUMO

Tartary buckwheat is one of the nutritious minor cereals and is grown in high-cold mountainous areas of arid and semi-arid zones where drought is a common phenomenon, potentially reducing the growth and yield. Melatonin, which is an amphiphilic low molecular weight compound, has been proven to exert significant effects in plants, under abiotic stresses, but its role in the Tartary buckwheat under drought stress remains unexplored. We evaluated the influence of melatonin supplementation on plant morphology and different physiological activities, to enhance tolerance to posed drought stress by scavenging reactive oxygen species (ROS) and alleviating lipid peroxidation. Drought stress decreased the plant growth and biomass production compared to the control. Drought also decreased Chl a, b, and the Fv/Fm ratio by 54%, 70%, and 8%, respectively, which was associated with the disorganized stomatal properties. Under drought stress, H2O2, O2•-, and malondialdehyde (MDA) contents increased by 2.30, 2.43, and 2.22-folds, respectively, which caused oxidative stress. In contrast, proline and soluble sugar content were increased by 84% and 39%, respectively. However, exogenous melatonin (100 µM) could improve plant growth by preventing ROS-induced oxidative damage by increasing photosynthesis, enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), secondary metabolites like phenylalanine ammonialyase, phenolics, and flavonoids, total antioxidant scavenging (free radical DPPH scavenging), and maintaining relative water content and osmoregulation substances under water stress. Therefore, our study suggested that exogenous melatonin could accelerate drought resistance by enhancing photosynthesis and antioxidant defense in Tartary buckwheat plants.


Assuntos
Antioxidantes/metabolismo , Fagopyrum/metabolismo , Melatonina/farmacologia , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Desidratação/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo
6.
J Environ Manage ; 270: 110855, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32501241

RESUMO

Coal mining activities remain of great environmental concern because of several negative impacts on soil ecosystems. Appropriate revegetation interventions of coal-spoiled lands can provide environmental management solutions to restore soil degraded ecosystems. The present study addressed the potential of the pioneer woody species, Elaeagnus angustifolia, in the restoration of coal-mined spoils under a range of different water (W) levels and nitrogen (N) and phosphorus (P) applications. Our results show how moderate applications of N (N60 = 60 mg N kg-1 soil) and P (P90 = 90 mg P kg-1 soil) fertilizers led either to maximum or minimum growth performance of E. angustifolia depending on whether W was applied at very high (W80 = 80% field capacity) or very low (W40 = 40% field capacity) levels suggesting that W was the main limiting factor for plant growth. Very low-W regime (W40N60P90) also caused significant reduction of photosynthetic parameters, including net photosynthetic rate, transpiration rate and water use efficiency. The combination of high W-N doses with low P doses (W70N96P36) positively influenced gas-exchange parameters, chlorophyll and carotenoid contents. Seedlings treated with low-W and -N doses (W50N24P144) showed highest increases in malondialdehyde content and lowest levels of relative water content (RWC). Decreases in malondialdehyde content and increases in RWC were observed following a gradual increment of W and N doses, indicating that high W and N doses contributed to drought tolerance of E. angustifolia by protecting cell membranes and increasing water status. Low-W and -N applications considerably increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and the contents of proline and soluble sugars, suggesting that E. angustifolia developed defensive strategies to avoid damage induced by water scarcity. Results from heatmap and principal component analyses confirmed that W and N were the main clustering factors, and both N and P performed well at high-W dose. The optimum growth performance of E. angustifolia was found under a combination of W level at 66.0% of field capacity, N dose of 74.0 mg kg-1 soil, and P dose of 36.0 mg kg-1 soil. Our findings demonstrate how optimum growth performance of E. angustifolia can be achieved by fine-tuning doses of W, N, and P resources, and how this in turn could greatly support the ecological restoration of coal-mined degraded environments.


Assuntos
Elaeagnaceae , Solo , Carvão Mineral , Ecossistema , Fertilizantes , Nutrientes , Água
7.
BMC Plant Biol ; 20(1): 181, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334512

RESUMO

BACKGROUND: Water availability and nutrient-status of soils play crucial roles in seedling establishment and plant survival in coal-spoiled areas worldwide. Restoration of spoils pertains to the application of proper doses of nutrients and water, and selection of particular plant species for efficient revegetation. This study aimed at examining the potential effects of different combinations of soil-water and fertilizers (nitrogen, N and phosphorus, P) on morpho-physiological and biochemical attributes of Amorpha fruticosa grown in coal-mined spoils. Three factors five-level central-composite-design with optimization technique response surface methodology (rsm) was used to optimize water irrigation and fertilizer application strategies. RESULTS: Our results revealed a strong correlation between experimental data and predicted values developed from the rsm model. The best responses of A. fruticosa in terms of plant height, stem diameter, root length, and dry biomass were observed under a high-water regime. Low-water regime caused a notable reduction in growth-associated parameters, and fertilization with either N or P did not show positive effects on those parameters, indicating that soil-water was the most influential factor for growth performance. Leaf water potential, gas-exchange parameters, and chlorophyll content significantly increased under high levels of soil-water, N and P, suggesting a synergistic effect of these factors for the improvement of photosynthesis-related parameters. At low soil-water contents and N-P fertilizer application levels, enhanced accumulation of malondialdehyde and proline indicated that A. fruticosa suffered from oxidative and osmotic stresses. Amorpha fruticosa also responded to oxidative stress by accelerating the activities of superoxide dismutase, catalase, and peroxidase. The effects of both fertilizers relied on soil-water, and fertilization was most effective under well-watered conditions. The maximum growth of A. fruticosa was observed under the combination of soil-water, N-dose and P-dose at 76% field capacity, 52.0 mg kg- 1 and 49.0 mg kg- 1, respectively. CONCLUSION: Our results demonstrate that rsm effectively designed appropriate doses of water and N-P fertilizer to restore coal-spoiled soils. Furthermore, A. fruticosa responded to low-water and fertilizer-shortage by upregulating defensive mechanism to avoid damage induced by such deficiencies. Finally, our findings provide effective strategies for revegetation of coal-contaminated spoils with A. fruticosa using appropriate doses of water and N-P fertilizers.


Assuntos
Biodegradação Ambiental , Carvão Mineral , Fabaceae/crescimento & desenvolvimento , Fertilizantes , Poluentes do Solo , Água , Antioxidantes/metabolismo , Clorofila/metabolismo , Fabaceae/enzimologia , Fabaceae/metabolismo , Malondialdeído/metabolismo , Transpiração Vegetal , Prolina/metabolismo , Poluentes do Solo/metabolismo
8.
Molecules ; 25(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244753

RESUMO

A greenhouse pot trial was conducted to investigate the effect of organic amendments combined with triple superphosphate on the bioavailability of heavy metals (HMs), Amorpha fruticosa growth and metal uptake from Pb-Zn mine tailings. Cattle manure compost (CMC), spent mushroom compost (SMC) and agricultural field soil (AFS) were applied to tailings at 5%, 10%, 20% and 30% w/w ratio, whereas sewage sludge (SS) and wood biochar (WB) were mixed at 2.5%, 5%, 10% and 20% w/w ratio. Triple superphosphate (TSP) was added to all the treatments at 4:1 (molar ratio). Amendments efficiently decreased DTPA-extracted Pb, Zn, Cd and Cu in treatments. Chlorophyll contents and shoot and root dry biomass significantly (p< 0.05) increased in the treatments of CMC (except T4 for chlorophyll b) and SMC, whereas treatments of SS (except T1 for chlorophyll a and b), WB and AFS (except T4 for chlorophyll a and b) did not show positive effects as compared to CK1. Bioconcentration factor (BCF) and translocation factor (TF) values in plant tissues were below 1 for most treatments. In amended treatments, soluble protein content increased, phenylalanine ammonialyase (PAL) and polyphenol oxidase (PPO) decreased, and catalase (CAT) activity showed varied results as compared to CK1 and CK2. Results suggested that A. fruticosa can be a potential metal phytostabilizer and use of CMC or SMC in combination with TSP are more effective than other combinations for the in situ stabilization of Pb-Zn mine tailings.


Assuntos
Difosfatos/química , Fabaceae/química , Chumbo/química , Zinco/química , Biodegradação Ambiental , Biomassa , Fenômenos Químicos , Clorofila/química , Concentração de Íons de Hidrogênio , Metais Pesados , Processos Fotoquímicos
9.
Front Plant Sci ; 11: 587579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584742

RESUMO

Vegetation reconstruction is an urgent problem in fragile environment like coal mine subsidence areas. Amygdalus pedunculata is an important eco-economic shrub species that promotes wind prevention, sand fixation as well as soil and water conservation. The natural regeneration of pure Amygdalus pedunculata forests is difficult to achieve because of its low seed germination rate and weak seedling growth. A stereo-complex ecosystem could potentially promote the germination and seedling growth of A. pedunculata and establish a steady mixed plantation consisting of trees and shrubs. Here, laboratory and pot experiments were conducted to assess the effect of four tree species on morphological and physiological indexes of A. pedunculata. The laboratory experiment showed that A. pedunculata seed germination and seedling growth from Yuyang County (YC-1) and Shenmu County (SC-6) were higher when plants were treated with the aqueous leaf extracts of Pinus sylvestris, Broussonetia papyrifera, and Pinus tabulaeformis compared with Populus simonii at concentrations of 2.5% (E2.5) and 5% (E5). Furthermore, the donor leaf extract was more sensitive to YC-1 than to SC-6. The pot experiment showed that the E2.5 and E5 treatments with the aqueous leaf extracts on the three tree species had strong promoting effects of seedling length, root length, seedling fresh weight, root fresh weight, and ground diameter for YC-1. The activity of catalase of A. pedunculata seedlings first increased and then decreased, while the activity of peroxidase, superoxide dismutase, roots, and the contents of soluble protein and chlorophyll decreased; the opposite patterns were observed for malondialdehyde, soluble sugar, cell membrane permeability, and proline were the opposite. Synthetical allelopathic effect index values of the leaf extracts of the three species on YC-1 were as follows: P. sylvestris > B. papyrifera > P. tabulaeformis (E2.5 to E20). Therefore, P. sylvestris and B. papyrifera could be used to promote the growth of A. pedunculata seedlings as well as for the construction of mixed plantations in coal mine degradation areas. Generally, this study provides new insight into the creation of stereo-complex ecosystems (P. sylvestris + A. pedunculata and B. papyrifera + A. pedunculata) in arid fragile environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA