Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Mol Diagn ; 23(4): 375-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387698

RESUMO

DNA junctions (DNAJs) frequently impact clinically relevant genes in tumors and are important for diagnostic and therapeutic purposes. Although routinely screened through fluorescence in situ hybridization assays, such testing only allows the interrogation of single-gene regions or known fusion partners. Comprehensive assessment of DNAJs present across the entire genome can only be determined from whole-genome sequencing. Structural variance analysis from whole-genome paired-end sequencing data is, however, frequently restricted to copy number changes without DNAJ detection. Through optimized whole-genome sequencing and specialized bioinformatics algorithms, complete structural variance analysis is reported, including DNAJs, from formalin-fixed DNA. Selective library assembly from larger fragments (>500 bp) and economical sequencing depths (300 to 400 million reads) provide representative genomic coverage profiles and increased allelic coverage to levels compatible with DNAJ calling (40× to 60×). Although consistently fragmented, more recently formalin-fixed, specimens (<2 years' storage) revealed consistent populations of larger DNA fragments. Optimized bioinformatics efficiently detected >90% of DNAJs in two prostate tumors (approximately 60% tumor) previously analyzed by mate-pair sequencing on fresh frozen tissue, with evidence of at least one spanning-read in 99% of DNAJs. Rigorous masking with data from unrelated formalin-fixed tissue progressively eliminated many false-positive DNAJs, without loss of true positives, resulting in low numbers of false-positive passing current filters. This methodology enables more comprehensive clinical genomics testing on formalin-fixed clinical specimens.


Assuntos
Fixadores/química , Formaldeído/química , Neoplasias/genética , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Translocação Genética/genética , Sequenciamento Completo do Genoma/métodos , Algoritmos , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/isolamento & purificação , Feminino , Genoma Humano , Genômica/métodos , Humanos , Masculino , Neoplasias/patologia
2.
Genome Announc ; 3(5)2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26450729

RESUMO

We report on nine draft genomes of Pseudomonas aeruginosa isolates, assembled using a hybrid paired-end and Nextera mate-pair library approach. Eight are of clinical origin, and one is the ATCC 27853 strain. We also report their multilocus sequence types.

4.
BMC Med Genet ; 15: 19, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24502676

RESUMO

BACKGROUND: Recessive genes cause disease when both copies are affected by mutant loci. Resolving the cis/trans relationship of variations has been an important problem both for researchers, and increasingly, clinicians. Of particular concern are patients who have two heterozygous disease-causing mutations and could be diagnosed as affected (one mutation on each allele) or as phenotypically normal (both mutations on the same allele). Several methods are currently used to phase genes, however due to cost, complexity and/or low sensitivity they are not suitable for clinical purposes. METHODS: Long-range amplification was used to select and enrich the target gene (CYP21A2) followed by modified mate-pair sequencing. Fragments that mapped coincidently to two heterozygous sites were identified and used for statistical analysis. RESULTS: Probabilities for cis/trans relationships between heterozygous positions were calculated along with 99% confidence intervals over the entire length of our 10 kb amplicons. The quality of phasing was closely related to the depth of coverage and the number of erroneous reads. Most of the error was found to have been introduced by recombination in the PCR reaction. CONCLUSIONS: We have developed a simple method utilizing massively parallel sequencing that is capable of resolving two alleles containing multiple heterozygous positions. This method stands out among other phasing tools because it provides quantitative results allowing confident haplotype calls.


Assuntos
Haplótipos/genética , Análise de Sequência/métodos , Heterozigoto , Reação em Cadeia da Polimerase , Probabilidade , Projetos de Pesquisa , Esteroide 21-Hidroxilase/genética
5.
DNA Res ; 19(5): 395-406, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22991452

RESUMO

High-throughput next-generation sequencing provides a revolutionary platform to unravel the precise DNA aberrations concealed within subgroups of tumour cells. However, in many instances, the limited number of cells makes the application of this technology in tumour heterogeneity studies a challenge. In order to address these limitations, we present a novel methodology to partner laser capture microdissection (LCM) with sequencing platforms, through a whole-genome amplification (WGA) protocol performed in situ directly on LCM engrafted cells. We further adapted current Illumina mate pair (MP) sequencing protocols to the input of WGA DNA and used this technology to investigate large genomic rearrangements in adjacent Gleason Pattern 3 and 4 prostate tumours separately collected by LCM. Sequencing data predicted genome coverage and depths similar to unamplified genomic DNA, with limited repetition and bias predicted in WGA protocols. Mapping algorithms developed in our laboratory predicted high-confidence rearrangements and selected events each demonstrated the predicted fusion junctions upon validation. Rearrangements were additionally confirmed in unamplified tissue and evaluated in adjacent benign-appearing tissues. A detailed understanding of gene fusions that characterize cancer will be critical in the development of biomarkers to predict the clinical outcome. The described methodology provides a mechanism of efficiently defining these events in limited pure populations of tumour tissue, aiding in the derivation of genomic aberrations that initiate cancer and drive cancer progression.


Assuntos
DNA de Neoplasias/química , Sequenciamento de Nucleotídeos em Larga Escala , Microdissecção e Captura a Laser , Técnicas de Amplificação de Ácido Nucleico , Neoplasias da Próstata/genética , Análise de Sequência de DNA , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , DNA de Neoplasias/isolamento & purificação , Genoma Humano , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia , Translocação Genética
6.
J Am Soc Nephrol ; 23(5): 915-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22383692

RESUMO

Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations.


Assuntos
Mutação , Rim Policístico Autossômico Dominante/genética , Análise de Sequência de DNA/métodos , Canais de Cátion TRPP/genética , Processamento Eletrônico de Dados , Humanos , Reação em Cadeia da Polimerase
7.
J Biol Inorg Chem ; 9(7): 839-49, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15328557

RESUMO

Superoxide reductases are a class of non-haem iron enzymes which catalyse the monovalent reduction of the superoxide anion O2- into hydrogen peroxide and water. Treponema pallidum (Tp), the syphilis spirochete, expresses the gene for a superoxide reductase called neelaredoxin, having the iron protein rubredoxin as the putative electron donor necessary to complete the catalytic cycle. In this work, we present the first cloning, overexpression in Escherichia coli and purification of the Tp rubredoxin. Spectroscopic characterization of this 6 kDa protein allowed us to calculate the molar absorption coefficient of the 490 nm feature of ferric iron, epsilon=6.9+/-0.4 mM(-1) cm(-1). Moreover, the midpoint potential of Tp rubredoxin, determined using a glassy carbon electrode, was -76+/-5 mV. Reduced rubredoxin can be efficiently reoxidized upon addition of Na(2)IrCl(6)-oxidized neelaredoxin, in agreement with a direct electron transfer between the two proteins, with a stoichiometry of the electron transfer reaction of one molecule of oxidized rubredoxin per one molecule of neelaredoxin. In addition, in presence of a steady-state concentration of superoxide anion, the physiological substrate of neelaredoxin, reoxidation of rubredoxin was also observed in presence of catalytic amounts of superoxide reductase, and the rate of rubredoxin reoxidation was shown to be proportional to the concentration of neelaredoxin, in agreement with a bimolecular reaction, with a calculated k(app)=180 min(-1). Interestingly, similar experiments performed with a rubredoxin from the sulfate-reducing bacteria Desulfovibrio vulgaris resulted in a much lower value of k(app)=4.5 min(-1). Altogether, these results demonstrated the existence for a superoxide-mediated electron transfer between rubredoxin and neelaredoxin and confirmed the physiological character of this electron transfer reaction.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Oxirredutases/metabolismo , Rubredoxinas/isolamento & purificação , Rubredoxinas/metabolismo , Superóxidos/metabolismo , Treponema pallidum/metabolismo , Proteínas de Bactérias , Clonagem Molecular , Eletroquímica , Transporte de Elétrons , Vetores Genéticos/genética , Proteínas de Ligação ao Ferro/química , Cinética , Oxirredutases/química , Rubredoxinas/genética , Análise Espectral , Superóxido Dismutase , Treponema pallidum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA