Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410304, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003723

RESUMO

Open-shell materials bearing multiple spin centres provide a key route to efficient charge transport in single-molecule electronic devices. They have narrow energy gaps, and their molecular orbitals align closely to the Fermi level of the metallic electrodes, thus allowing efficient electronic transport and higher conductance. Maintaining and stabilising multiple open-shell states - especially in contact with metallic electrodes - is however very challenging, generally requiring a continuous chemical or electrochemical potential to avoid self-immolation of the open-shell character. To overcome this issue, we designed, synthesised, and measured the conductance of a series of bis(indeno) fused acenes, where stability is imparted by a close-shell quinoidal conformation in resonance with the diradical electronic configuration. We show here that these compounds have anti-ohmic behaviour, with conductance increasing with increasing molecular length, at an unprecedented rate and across the entire bias window ([[EQUATION]]). Density Functional Theory (DFT) calculations support our findings, showing the rapidly narrowing HOMO-LUMO gap, unique to these diradicaloid structures, is responsible for the observed behaviour. Our results provide a framework for achieving efficient transport in neutral compounds and demonstrate the promise that diradicaloid materials have in single-molecule electronics, owing to their great stability and unique electronic structure.

2.
Small ; 20(25): e2308865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221684

RESUMO

Mechanosensitive molecular junctions, where conductance is sensitive to an applied stress such as force or displacement, are a class of nanoelectromechanical systems unique for their ability to exploit quantum mechanical phenomena. Most studies so far relied on reconfiguration of the molecule-electrode interface to impart mechanosensitivity, but this approach is limited and, generally, poorly reproducible. Alternatively, devices that exploit conformational flexibility of molecular wires have been recently proposed. The mechanosensitive properties of molecular wires containing the 1,1'-dinaphthyl moiety are presented here. Rotation along the chemical bond between the two naphthyl units is possible, giving rise to two conformers (transoid and cisoid) that have distinctive transport properties. When assembled as single-molecule junctions, it is possible to mechanically trigger the transoid to cisoid transition, resulting in an exquisitely sensitive mechanical switch with high switching ratio (> 102). Theoretical modeling shows that charge reconfiguration upon transoid to cisoid transition is responsible for the observed behavior, with generation and subsequent lifting of quantum interference features. These findings expand the experimental toolbox of molecular electronics with a novel chemical structure with outstanding electromechanical properties, further demonstrating the importance of subtle changes in charge delocalization on the transport properties of single-molecule devices.

3.
Chem Sci ; 14(47): 13934-13943, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075648

RESUMO

The high luminescence efficiency of cyclometallated iridium(iii) complexes, including those widely used in OLEDs, is typically attributed solely to the formally spin-forbidden phosphorescence process being facilitated by spin-orbit coupling with the Ir(iii) centre. In this work, we provide unequivocal evidence that an additional mechanism can also participate, namely a thermally activated delayed fluorescence (TADF) pathway. TADF is well-established in other materials, including in purely organic compounds, but has never been observed in iridium complexes. Our findings may transform the design of iridium(iii) complexes by including an additional, faster fluorescent radiative decay pathway. We discover it here in a new dinuclear complex, 1, of the form [Ir(N^C)2]2(µ-L), where N^C represents a conventional N^C-cyclometallating ligand, and L is a bis-N^O-chelating bridging ligand derived from 4,6-bis(2-hydroxyphenyl)-pyrimidine. Complex 1 forms selectively as the rac diastereoisomer upon reaction of [Ir(N^C)2(µ-Cl)]2 with H2L under mild conditions, with none of the alternative meso isomer being separated. Its structure is confirmed by X-ray diffraction. Complex 1 displays deep-red luminescence in solution or in polystyrene film at room temperature (λem = 643 nm). Variable-temperature emission spectroscopy uncovers the TADF pathway, involving the thermally activated re-population of S1 from T1. At room temperature, TADF reduces the photoluminescence lifetime in film by a factor of around 2, to 1 µs. The TADF pathway is associated with a small S1-T1 energy gap ΔEST of approximately 50 meV. Calculations that take into account the splitting of the T1 sublevels through spin-orbit coupling perfectly reproduce the experimentally observed temperature-dependence of the lifetime over the range 20-300K. A solution-processed OLED comprising 1 doped into the emitting layer at 5 wt% displays red electroluminescence, λEL = 625 nm, with an EQE of 5.5% and maximum luminance of 6300 cd m-2.

4.
Inorg Chem ; 62(31): 12356-12371, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498694

RESUMO

A series of seven new platinum(II) complexes PtLnCl have been prepared, where Ln is an NCN-coordinating ligand comprising a benzene ring 1,3-disubstituted with two different azaheterocycles. In PtL1-5Cl, one heterocycle is a simple pyridine ring, while the other is an isoquinoline, a quinoline, a pyrimidine (L1, L2, L3), or a p-CF3- or p-OMe-substituted pyridine (L4 and L5). PtL6Cl incorporates both a p-CF3 and a p-OMe-substituted pyridine. The synthesis of the requisite proligands HLn is achieved using Pd-catalyzed cross-coupling methodology. The molecular structures of six of the Pt(II) complexes have been determined by X-ray diffraction. All the complexes are brightly luminescent in deoxygenated solution at room temperature. The absorption and emission properties are compared with those of the corresponding symmetrical complexes featuring two identical heterocycles, PtLnsymCl, and of the parent Pt(dpyb)Cl containing two unsubstituted pyridines [dpybH = 1,3-di(2-pyridyl)benzene]. While the absorption spectra of the nonsymmetrical complexes show features of both PtLnsymCl and Pt(dpyb)Cl, the emission generally resembles that of whichever of the corresponding symmetrical complexes has the lower-energy emission. PtL1Cl differs in that─at room temperature but not at 77 K─it displays emission bands that can be attributed to excited states involving both the pyridine and the isoquinoline rings, despite the latter being unequivocally lower in energy. This unusual behavior is attributed to thermally activated repopulation of the former excited state from the latter, facilitated by the very long-lived nature of the isoquinoline-based excited state. At elevated concentrations, all the complexes show an additional red-shifted emission band attributable to excimers. For PtL1Cl, the excimer strikingly dominates the emission spectra at all but the lowest concentrations (<10-5 M). Trends in the energies of the excimers and their propensity to form are compared with those of the symmetrical analogues.

5.
Chem Sci ; 12(17): 6172-6180, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33996015

RESUMO

A novel dinuclear platinum(ii) complex featuring a ditopic, bis-tetradentate ligand has been prepared. The ligand offers each metal ion a planar O^N^C^N coordination environment, with the two metal ions bound to the nitrogen atoms of a bridging pyrimidine unit. The complex is brightly luminescent in the red region of the spectrum with a photoluminescence quantum yield of 83% in deoxygenated methylcyclohexane solution at ambient temperature, and shows a remarkably short excited state lifetime of 2.1 µs. These properties are the result of an unusually high radiative rate constant of around 4 × 105 s-1, a value which is comparable to that of the very best performing Ir(iii) complexes. This unusual behaviour is the result of efficient thermally activated reverse intersystem crossing, promoted by a small singlet-triplet energy difference of only 69 ± 3 meV. The complex was incorporated into solution-processed OLEDs achieving EQEmax = 7.4%. We believe this to be the first fully evidenced report of a Pt(ii) complex showing thermally activated delayed fluorescence (TADF) at room temperature, and indeed of a Pt(ii)-based delayed fluorescence emitter to be incorporated into an OLED.

6.
Dalton Trans ; 49(30): 10463-10476, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685958

RESUMO

The synthesis and photophysical properties of a set of iridium(iii) complexes featuring tridentate N^N^O-coordinating ligands are described, of generic structure [Ir(N^C^N-dpyx)(N^N^O-Ln)]+ (n = 1 to 4) (dpyx = 1,3-dipyridyl-4,6-dimethylbenzene). The proligands HLn are Schiff bases synthesised by condensation of salicylaldehydes with N-methyl-hydrazinopyridines: they are able to coordinate to the Ir(iii) via lateral pyridine-N and phenolate-O- atoms and a central hydrazone-N atom; the four examples differ in the substitution pattern within the phenolate ring. The bis-tridentate coordination is confirmed by X-ray diffraction. The complexes are phosphorescent in solution at ambient temperature, with higher quantum yields and longer lifetimes than those of structurally related bis-cyclometallated complexes with an N^N^C-coordinating ligand. Related proligands H2L5 and H2L6 have been prepared from 4,6-bis(1-methyl-hydrazino)pyrimidine. They feature a central pyrimidine and two N^N^O units. They are shown to bind as ditopic, bis-tridentate ligands with two iridium(iii) ions, leading to unprecedented dinuclear complexes of the form [{Ir(N^C^N)}2(O^N^N-N^N^O-Ln)]2+ (n = 5, 6; N^C^N = dpyx or 1,3-dipyridyl-4,6-difluoro-benzene), with an intramolecular IrIr distance of around 6 Å determined crystallographically. Mononuclear analogues [Ir(N^C^N-dpyx)(N^N^O-HLn)]+ have also been isolated. The dinuclear complexes display a well-defined and unusually intense lowest-energy absorption band in the visible region, around 480 nm. They emit much more efficiently than their mononuclear counterparts, even though the emission wavelengths are comparable. Their superior performance appears to be due to an enhancement in the radiative rate constant, affirming conclusions drawn from recent related studies of dinuclear Ir(iii) and Pt(ii) complexes with ditopic, pyrimidine-based cyclometallating ligands.

7.
Inorg Chem ; 58(2): 1155-1166, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30614701

RESUMO

A series of heterobimetallic wire-like organometallic complexes [( tpy-C6H4-R)(PPh3)2Ru-C≡C-Fc]+ ( tpy-C6H4-R = 4'-(aryl)-2,2':6',2''-terpyridyl, Fc = [(η5-Cp)2Fe], R = -H, -Me, -F, -NMe2 in complexes 5-8, respectively) featuring ferrocenyl and 4'-(aryl)-2,2':6',2''-terpyridyl ruthenium(II) complexes as redox active metal termini, have been synthesized. Various spectroscopic tools, such as multinuclear NMR, IR spectra, HRMS, CHN analyses, and single crystal X-ray crystallography have been utilized to characterize the heterobimetallic complexes. The electrochemical and UV-vis-NIR spectroscopic studies have been investigated to evaluate the electronic delocalization across the molecular backbones of the Ru(II)-Fe(II) heterobinuclear organometallic dyads. Electrochemical studies reveal two well-separated reversible redox waves as a result of successive oxidation of the ferrocenyl and Ru(II) redox centers. The spin density distribution analyses reveal that the initial oxidation process is associated with the Fe(II)/Fe(III) couple followed by one electron oxidation of the ruthenium(II) center. The high Kc value (0.11-1.73 × 1012) and intense NIR absorption, with molar absorption coefficient (in the order of 103 M-1 cm-1) for the RuIIFeIII mixed-valence species, signify strong electronic communication between the two metal termini. The electronic coupling constant ( Hab) has been estimated to be 492 and 444 cm-1 for the structurally characterized complexes 6 and 7, respectively. The redox and NIR absorption features indicate that the mixed-valence system of the heterobinuclear dyads belongs to a Robin and Day "class II" system.

8.
Dalton Trans ; 47(29): 9877-9888, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29998273

RESUMO

A series of arylene-vinylene π-conjugated terpyridyl ruthenium(ii) complexes, [Ru(PPh3)2Cl(tpy-C6H4-CH[double bond, length as m-dash]CH-Ar)][PF6] (1-4; tpy = 2,2':6',2''-terpyridyl, where Ar = phenyl, tolyl, 1-naphthyl and 9-anthracenyl as substituents at the 4' position of tpy), have been synthesized and characterized by multinuclear NMR, IR, HRMS and single crystal X-ray crystallography. The influence of the electronic nature of arylene groups on their photophysical and electrochemical properties has been investigated to understand the electronic interaction between the metal-organic redox centers. Furthermore, a σ-donor phenylacetylide group has been incorporated to accomplish [Ph-C[triple bond, length as m-dash]C-Ru(PPh3)2(tpy-C6H4-CH[double bond, length as m-dash]CH-Ar)][PF6] (5-8) complexes by the substitution of a coordinated chloride ligand and to investigate the change in their redox and photophysical properties. DFT studies have been performed to gain an insight into their electronic properties by determining the HOMO-LUMO energy levels and frontier molecular orbitals of all the synthesized Ru(ii) complexes.

9.
Dalton Trans ; 47(40): 14304-14317, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29967914

RESUMO

Organometallic molecular wires with π-conjugation along their molecular backbones are of considerable interest for application in molecular-scale electronics. In this regard, thienylethynyl-based π-conjugated oligomers of three, five and seven thienylethynyl units with -C[triple bond, length as m-dash]C-H termini have been successfully synthesized through stepwise Pd(0)/Cu(i)-catalyzed Sonogashira coupling. The corresponding highly soluble diruthenium(ii) diacetylide complexes (O1-Ru2, O3-Ru2, O5-Ru2 and O7-Ru2, respectively) have been prepared by the reaction of cis-Ru(dppe)2Cl2 and NaPF6 in DCM with the corresponding rigid rod-like thienylethynyl oligomers with one, three, five and seven thienylethynyl π-conjugated segments containing alkynyl termini (O1, O3, O5 and O7). These Ru(ii)-Cl capped diacetylide complexes have been further functionalized by incorporating a phenylacetynyl moiety to afford [Ru(ii)-C[triple bond, length as m-dash]C-Ph]-capped diacetylide organometallic wires (O1-Ru2-Ph, O3-Ru2-Ph, O5-Ru2-Ph and O7-Ru2-Ph). The photophysical properties of the highly soluble thienylethynyl-based oligomers and Ru(ii)-organometallic wires have been explored to understand their electronic properties. Electrochemical studies of the binuclear ruthenium(ii)-alkynyl complexes showed highly interesting results, revealing long-range electrochemical communication between the two remote Ru(ii) termini connected even with five and seven thienylethynyl units. DFT computational studies further support the long range electrochemical communication between the redox active metal termini through heavy participation of the thienylethynyl bridge in the corresponding mono-oxidized mixed valence species of the organometallic wire-like complexes.

10.
Dalton Trans ; 46(18): 5918-5929, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28406507

RESUMO

Fluorenyl-alkynyl based π-conjugated rod-shaped oligomers bearing different central aromatic moieties and functionalizable di-alkynyl termini, such as H-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-H (OH1), H-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Btz-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-H (OH2) and H-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Btd-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-H (OH3) where Fl = 9,9-dioctylfluorene, Btz = N-hexylbenzotriazole, and Btd = benzothiadiazole, were successfully synthesized by a Pd(0) catalyzed Stille coupling protocol. Electron withdrawing benzothiadiazole and benzotriazole as strong to moderate acceptors and fluorene as the donor have been incorporated to adjust the Donor-Acceptor (D-A) strength for fine-tuning the bandgap (Eg) as well as the emission wavelength. The corresponding digold(i) σ-complexes (PPh3)Au-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Au(PPh3) (OM1), (PPh3)Au-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Btz-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Au(PPh3) (OM2) and (PPh3)Au-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Btd-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Au(PPh3) (OM3) have also been prepared by a reaction of Au(PPh3)Cl and methanolic NaOMe in DCM with the corresponding alkynyl functionalized oligomers to take advantage of the heavy-atom effect on their emissive properties. The synthesized rod-shaped π-conjugated fluorene based oligomers and their binuclear Au(i) σ-complexes have been unambiguously characterized by various spectroscopic tools such as FTIR and multinuclear NMR as well as MALDI-TOF and CHN analyses. The absorption and emission spectral studies exhibited a progressive red shift with increasing the electron withdrawing character of the central aromatic unit. The rod-like oligomers having alkynyl termini and the corresponding digold(i) complexes are found to be blue, cyan and yellow emissive, demonstrating the fine-tuning of the emission wavelength. Most importantly, the fluorene based π-conjugated yellow light emitters OH3 and OM3 are successfully achieved by varying the donor/acceptor moiety to the fluorenyl-alkynyl backbone. The digold(i) diacetylide organometallic wires exhibit phosphorescence at 77 K in degassed CH2Cl2 due to the efficient intersystem crossing from the S1 to the T1 excited state as induced by heavy atoms.

11.
J Indian Med Assoc ; 110(9): 649-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23741840

RESUMO

Metastatic carcinoma in an abdominal wall incision from carcinoma cervix is an uncommon and often a preterminal event. It has been reported mostly in advanced cases, often previously treated with radiotherapy. Here a case of cervical cancer with subcutaneous and rectus sheath recurrence 4 months after abdominal hysterectomy in a previously unsuspected case of adenocarcinoma cervix is reported. The patient was treated with excision of the metastatic masses followed by chemoradiation and is doing well at 5 months since presentation.


Assuntos
Adenocarcinoma/secundário , Neoplasias Musculares/secundário , Neoplasias Cutâneas/secundário , Neoplasias do Colo do Útero/patologia , Adulto , Feminino , Humanos , Histerectomia/efeitos adversos , Neoplasias Musculares/terapia , Reto do Abdome , Neoplasias Cutâneas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA