Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(50): eabq8652, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525503

RESUMO

Bacterial membranes are composed of fatty acids (FAs) ester-linked to glycerol-3-phosphate, while archaea have membranes made of isoprenoid chains ether-linked to glycerol-1-phosphate. Many archaeal species organize their membrane as a monolayer of membrane-spanning lipids (MSLs). Exceptions to this "lipid divide" are the production by some bacterial species of (ether-bound) MSLs, formed by tail-to-tail condensation of FAs resulting in the formation of (iso) diabolic acids (DAs), which are the likely precursors of paleoclimatological relevant branched glycerol dialkyl glycerol tetraether molecules. However, the enzymes responsible for their production are unknown. Here, we report the discovery of bacterial enzymes responsible for the condensation reaction of FAs and for ether bond formation and confirm that the building blocks of iso-DA are branched iso-FAs. Phylogenomic analyses of the key biosynthetic genes reveal a much wider diversity of potential MSL (ether)-producing bacteria than previously thought, with importantt implications for our understanding of the evolution of lipid membranes.


Assuntos
Éter , Glicerol , Archaea/genética , Archaea/química , Bactérias , Lipídeos de Membrana/química , Éteres/química , Ácidos Graxos , Fosfatos
2.
Proc Natl Acad Sci U S A ; 115(14): 3704-3709, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555770

RESUMO

One of the main differences between bacteria and archaea concerns their membrane composition. Whereas bacterial membranes are made up of glycerol-3-phosphate ester lipids, archaeal membranes are composed of glycerol-1-phosphate ether lipids. Here, we report the construction of a stable hybrid heterochiral membrane through lipid engineering of the bacterium Escherichia coli By boosting isoprenoid biosynthesis and heterologous expression of archaeal ether lipid biosynthesis genes, we obtained a viable E. coli strain of which the membranes contain archaeal lipids with the expected stereochemistry. It has been found that the archaeal lipid biosynthesis enzymes are relatively promiscuous with respect to their glycerol phosphate backbone and that E. coli has the unexpected potential to generate glycerol-1-phosphate. The unprecedented level of 20-30% archaeal lipids in a bacterial cell has allowed for analyzing the effect on the mixed-membrane cell's phenotype. Interestingly, growth rates are unchanged, whereas the robustness of cells with a hybrid heterochiral membrane appeared slightly increased. The implications of these findings for evolutionary scenarios are discussed.


Assuntos
Archaea/metabolismo , Evolução Biológica , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Éteres/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Membrana Celular/química , Éteres/química , Lipídeos de Membrana/química , Fosfolipídeos/química
3.
PLoS One ; 12(9): e0184355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28902855

RESUMO

High-level, recombinant production of membrane-integrated proteins in Escherichia coli is extremely relevant for many purposes, but has also been proven challenging. Here we study a combination of transcriptional fine-tuning in E. coli LEMO21(DE3) with different codon usage algorithms for heterologous production of membrane proteins. The overexpression of 6 different membrane proteins is compared for the wild-type gene codon usage variant, a commercially codon-optimized variant, and a codon-harmonized variant. We show that transcriptional fine-tuning plays a major role in improving the production of all tested proteins. Moreover, different codon usage variants significantly improved production of some of the tested proteins. However, not a single algorithm performed consistently best for the membrane-integrated production of the 6 tested proteins. In conclusion, for improving heterologous membrane protein production in E. coli, the major effect is accomplished by transcriptional tuning. In addition, further improvements may be realized by attempting different codon usage variants, such as codon harmonized variants, which can now be easily generated through our online Codon Harmonizer tool.


Assuntos
Algoritmos , Códon/genética , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/biossíntese , Software , Escherichia coli/genética , Escherichia coli/metabolismo , Código Genético , Proteínas de Membrana/genética , Engenharia Metabólica/métodos , Organismos Geneticamente Modificados , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transcrição Gênica/genética , Transformação Bacteriana/genética
4.
Extremophiles ; 21(4): 651-670, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28508135

RESUMO

The cytoplasmic membrane of a prokaryotic cell consists of a lipid bilayer or a monolayer that shields the cellular content from the environment. In addition, the membrane contains proteins that are responsible for transport of proteins and metabolites as well as for signalling and energy transduction. Maintenance of the functionality of the membrane during changing environmental conditions relies on the cell's potential to rapidly adjust the lipid composition of its membrane. Despite the fundamental chemical differences between bacterial ester lipids and archaeal ether lipids, both types are functional under a wide range of environmental conditions. We here provide an overview of archaeal and bacterial strategies of changing the lipid compositions of their membranes. Some molecular adjustments are unique for archaea or bacteria, whereas others are shared between the two domains. Strikingly, shared adjustments were predominantly observed near the growth boundaries of bacteria. Here, we demonstrate that the presence of membrane spanning ether-lipids and methyl branches shows a striking relationship with the growth boundaries of archaea and bacteria.


Assuntos
Adaptação Fisiológica , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Membrana Celular/fisiologia , Concentração de Íons de Hidrogênio , Pressão , Temperatura
5.
Sci Rep ; 6: 39235, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976713

RESUMO

Orally administered phages to control zoonotic pathogens face important challenges, mainly related to the hostile conditions found in the gastrointestinal tract (GIT). These include temperature, salinity and primarily pH, which is exceptionally low in certain compartments. Phage survival under these conditions can be jeopardized and undermine treatment. Strategies like encapsulation have been attempted with relative success, but are typically complex and require several optimization steps. Here we report a simple and efficient alternative, consisting in the genetic engineering of phages to display lipids on their surfaces. Escherichia coli phage T7 was used as a model and the E. coli PhoE signal peptide was genetically fused to its major capsid protein (10 A), enabling phospholipid attachment to the phage capsid. The presence of phospholipids on the mutant phages was confirmed by High Performance Thin Layer Chromatography, Dynamic Light Scattering and phospholipase assays. The stability of phages was analysed in simulated GIT conditions, demonstrating improved stability of the mutant phages with survival rates 102-107 pfu.mL-1 higher than wild-type phages. Our work demonstrates that phage engineering can be a good strategy to improve phage tolerance to GIT conditions, having promising application for oral administration in veterinary medicine.


Assuntos
Bacteriófago T7/genética , Farmacorresistência Viral , Engenharia Genética , Administração Oral , Animais , Bacteriófago T7/crescimento & desenvolvimento , Bacteriófago T7/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cromatografia em Camada Fina , Difusão Dinâmica da Luz , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Trato Gastrointestinal/virologia , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Fosfolipídeos/análise , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Porinas/química , Porinas/metabolismo , Sinais Direcionadores de Proteínas/genética , Temperatura , Medicina Veterinária
6.
Biochem J ; 470(3): 343-55, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26195826

RESUMO

In archaea, the membrane phospholipids consist of isoprenoid hydrocarbon chains that are ether-linked to a sn-glycerol1-phosphate backbone. This unique structure is believed to be vital for the adaptation of these micro-organisms to extreme environments, but it also reflects an evolutionary marker that distinguishes archaea from bacteria and eukaryotes. CDP-archaeol is the central precursor for polar head group attachment. We examined various bacterial enzymes involved in the attachment of L-serine and glycerol as polar head groups for their promiscuity in recognizing CDP-archaeol as a substrate. Using a combination of mutated bacterial and archaeal enzymes, archaetidylethanolamine (AE) and archaetidylglycerol (AG) could be produced in vitro using nine purified enzymes while starting from simple building blocks. The ether lipid pathway constituted by a set of archaeal and bacterial enzymes was introduced into Escherichia coli, which resulted in the biosynthesis of AE and AG. This is a further step in the reprogramming of E. coli for ether lipid biosynthesis.


Assuntos
Escherichia coli/metabolismo , Éteres/metabolismo , Lipídeos/biossíntese , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Éteres/química , Éteres de Glicerila/química , Éteres de Glicerila/metabolismo , Lipídeos/química , Engenharia Metabólica
7.
BMC Biochem ; 11: 18, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20429931

RESUMO

BACKGROUND: Activation of fatty acids by acyl-CoA synthetase enzymes is required for de novo lipid synthesis, fatty acid catabolism, and remodeling of biological membranes. Human long-chain acyl-CoA synthetase member 6, ASCL6, is a form present in the plasma membrane of cells. Splicing events affecting the amino-terminus and alternative motifs near the ATP-binding site generate different isoforms of ACSL6. RESULTS: Isoforms with different fatty acid Gate-domain motifs have different activity and the form lacking this domain, isoform 3, showed no detectable activity. Enzymes truncated of the first 40 residues generate acyl-CoAs at a faster rate than the full-length protein. The gating residue, which prevents entry of the fatty acid substrate unless one molecule of ATP has already accessed the catalytic site, was identified as a tyrosine for isoform 1 and a phenylalanine for isoform 2 at position 319. All isoforms, with or without a fatty acid Gate-domain, as well as recombinant protein truncated of the N-terminus, can interact to form enzymatic complexes with identical or different isoforms. CONCLUSION: The alternative fatty acid Gate-domain motifs are essential determinants for the activity of the human ACSL6 isoforms, which appear to act as homodimeric enzyme as well as in complex with other spliced forms. These findings provide evidence that the diversity of these enzyme species could produce the variety of acyl-CoA synthetase activities that are necessary to generate and repair the hundreds of lipid species present in membranes.


Assuntos
Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Octoxinol/metabolismo , Fenilalanina/metabolismo , Estrutura Terciária de Proteína , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA