Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 13(11): 1793-811, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21824247

RESUMO

In unicellular amoebae, such as Dictyostelium discoideum, bacterial phagocytosis is a food hunting device, while in higher organisms it is the first defence barrier against microbial infection. In both cases, pathogenic bacteria exploit phagocytosis to enter the cell and multiply intracellularly. Salmonella typhimurium, the agent of food-borne gastroenteritis, is phagocytosed by both macrophages and Dictyostelium cells. By using cell biological assays and global transcriptional analysis with DNA microarrays covering the Dictyostelium genome, we show here that S. typhimurium is pathogenic for Dictyostelium cells. Depending on the degree of virulence, which in turn depended on bacterial growth conditions, Salmonella could kill Dictyostelium cells or inhibit their growth and development. In the early phase of infection in non-nutrient buffer, the ingested bacteria escaped degradation, induced a starvation-like transcriptional response but inhibited selectively genes required for chemotaxis and aggregation. This way differentiation of the host cells into spore and stalk cells was blocked or delayed, which in turn is likely to be favourable for the establishment of a replicative niche for Salmonella. Inhibition of the aggregation competence and chemotactic streaming of aggregation-competent cells in the presence of Salmonella suggests interference with cAMP signalling.


Assuntos
Dictyostelium/microbiologia , Dictyostelium/fisiologia , Fagocitose , Salmonella typhimurium/patogenicidade , Sobrevivência Celular , AMP Cíclico/metabolismo , Dictyostelium/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Análise em Microsséries , Salmonella typhimurium/crescimento & desenvolvimento , Transdução de Sinais
2.
BMC Genomics ; 9: 291, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18559084

RESUMO

BACKGROUND: Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS: The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION: The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria.


Assuntos
Dictyostelium/genética , Dictyostelium/fisiologia , Genoma de Protozoário , Fagocitose/genética , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos , Meios de Cultura , Proteínas do Citoesqueleto/genética , Dictyostelium/crescimento & desenvolvimento , Escherichia coli , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Modelos Genéticos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose/fisiologia , Pinocitose/genética , Biossíntese de Proteínas , Proteoma , Proteínas de Protozoários/genética , Transdução de Sinais , Esteróis/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA