Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Opt ; 28(12): 126001, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38074217

RESUMO

Significance: Post-burn scars and scar contractures present significant challenges in burn injury management, necessitating accurate evaluation of the wound healing process to prevent or minimize complications. Non-invasive and accurate assessment of burn scar vascularity can offer valuable insights for evaluations of wound healing. Optical coherence tomography (OCT) and OCT angiography (OCTA) are promising imaging techniques that may enhance patient-centered care and satisfaction by providing detailed analyses of the healing process. Aim: Our study investigates the capabilities of OCT and OCTA for acquiring information on blood vessels in burn scars and evaluates the feasibility of utilizing this information to assess burn scars. Approach: Healthy skin and neighboring scar data from nine burn patients were obtained using OCT and processed with speckle decorrelation, Doppler OCT, and an enhanced technique based on joint spectral and time domain OCT. These methods facilitated the assessment of vascular structure and blood flow velocity in both healthy skin and scar tissues. Analyzing these parameters allowed for objective comparisons between normal skin and burn scars. Results: Our study found that blood vessel distribution in burn scars significantly differs from that in healthy skin. Burn scars exhibit increased vascularization, featuring less uniformity and lacking the intricate branching network found in healthy tissue. Specifically, the density of the vessels in burn scars is 67% higher than in healthy tissue, while axial flow velocity in burn scar vessels is 25% faster than in healthy tissue. Conclusions: Our research demonstrates the feasibility of OCT and OCTA as burn scar assessment tools. By implementing these technologies, we can distinguish between scar and healthy tissue based on its vascular structure, providing evidence of their practicality in evaluating burn scar severity and progression.


Assuntos
Cicatriz , Tomografia de Coerência Óptica , Humanos , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Tomografia de Coerência Óptica/métodos , Pele/irrigação sanguínea , Cicatrização , Neovascularização Patológica/patologia
2.
Plant Methods ; 19(1): 105, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821949

RESUMO

BACKGROUND: Modern field pea breeding faces a significant challenge in selecting lines with strong stems that resist lodging. Traditional methods of assessing stem strength involve destructive mechanical tests on mature stems after natural senescence, such as measuring stem flexion, stem buckling or the thickness of dry stems when compressed, but these measurements may not correspond to the strength of stems in the living plant. Optical coherence tomography (OCT) can be used as a noncontact and nondestructive method to measure stem wall thickness in living plants by acquiring two- or three-dimensional images of living plant tissue. RESULTS: In this proof-of-principle study, we demonstrated in vivo characterisation of stem wall thickness using OCT, with the measurement corrected for the refractive index of the stem tissue. This in vivo characterisation was achieved through real-time imaging of stems, with an acquisition rate of 13 milliseconds per two-dimensional, cross-sectional OCT image. We also acquired OCT images of excised stems and compared the accuracy of in vivo OCT measurements of stem wall thickness with ex vivo results for 10 plants each of two field pea cultivars, Dunwa and Kaspa. In vivo OCT measurements of stem wall thickness have an average percent error of - 3.1% when compared with ex vivo measurements. Additionally, we performed in vivo measurements of both stem wall thickness and stem width at various internode positions on the two cultivars. The results revealed that Dunwa had a uniform stem wall thickness across different internode positions, while Kaspa had a significantly negative slope of [Formula: see text]0.0198 mm/node. Both cultivars exhibited an increase in stem width along the internode positions; however, Dunwa had a rate of increase of 0.1844 mm/node, which is three times higher than that of Kaspa. CONCLUSIONS: Our study has demonstrated the efficacy of OCT for accurate measurement of the stem wall thickness of live field pea. Moreover, OCT shows that the trends of stem wall thickness and stem width along the internode positions are different for the two cultivars, Dunwa and Kaspa, potentially hinting at differences in their stem strength. This rapid, in vivo imaging method provides a useful tool for characterising physical traits critical in breeding cultivars that are resistant to lodging.

3.
Biomolecules ; 13(8)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627295

RESUMO

Diabetes affects the structure of the blood vessel walls. Since the blood vessel walls are made of birefringent organized tissue, any change or damage to this organization can be evaluated using polarization-sensitive optical coherence tomography (PS-OCT). In this paper, we used PS-OCT along with the blood vessel wall birefringence index (BBI = thickness/birefringence2) to non-invasively assess the structural integrity of the human retinal blood vessel walls in patients with diabetes and compared the results to those of healthy subjects. PS-OCT measurements revealed that blood vessel walls of diabetic patients exhibit a much higher birefringence while having the same wall thickness and therefore lower BBI values. Applying BBI to diagnose diabetes demonstrated high accuracy (93%), sensitivity (93%) and specificity (93%). PS-OCT measurements can quantify small changes in the polarization properties of retinal vessel walls associated with diabetes, which provides researchers with a new imaging tool to determine the effects of exercise, medication, and alternative diets on the development of diabetes.


Assuntos
Diabetes Mellitus , Tomografia de Coerência Óptica , Humanos , Vasos Retinianos/diagnóstico por imagem , Retina/diagnóstico por imagem , Diabetes Mellitus/diagnóstico por imagem , Exercício Físico
4.
Opt Express ; 30(24): 44071-44084, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523090

RESUMO

We report here the first demonstration of a cryogenic mid-wave infrared (MWIR) hyperspectral fixed-cavity Fabry-Perot filter based on a suspended tensile-strained single-layer 2-D subwavelength grating (SWG) mirror. Optical design optimization of the 2-D SWG mirror and parameter tolerance study are performed. For the first time, process control of grating air-hole sidewall angle and the grating air-hole fill-factor fabrication error caused by e-beam lithography electron-scattering effect is reported. At 80 K, namely the operating temperature of MWIR photodetectors, the as-fabricated suspended 2-D SWG mirror has achieved excellent surface flatness with a slight center-to-edge bowing of 15 nm over a 1-mm2 large mirror area and a high average reflectivity of 0.97 across a wavelength range of 3.72-5 µm, which represents an unprecedentedly wide fractional bandwidth Δλ/λc of 30%. The cryogenically cooled Fabry-Perot filter exhibits an unrivaled high spectral resolution of 10 nm that far exceeds the optical requirement for MWIR hyperspectral imaging applications.

5.
Biomed Opt Express ; 12(7): 4340-4362, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457418

RESUMO

A new method based on polarization-sensitive optical coherence tomography (PS-OCT) is introduced to determine the polarization properties of human retinal vessel walls, in vivo. Measurements were obtained near the optic nerve head of three healthy human subjects. The double pass phase retardation per unit depth (DPPR/UD), which is proportional to the birefringence, is higher in artery walls, presumably because of the presence of muscle tissue. Measurements in surrounding retinal nerve fiber layer tissue yielded lower DPPR/UD values, suggesting that the retinal vessel wall tissue near the optic nerve is not covered by retinal nerve fiber layer tissue (0.43°/µm vs. 0.77°/µm, respectively). Measurements were obtained from multiple artery-vein pairs, to quantify the different polarization properties. Measurements were taken along a section of the vessel wall, with changes in DPPR/UD up to 15%, while the vessel wall thickness remained relatively constant. A stationary scan pattern was applied to determine the influence of involuntary eye motion on the measurement, which was significant. Measurements were also analyzed by two examiners, with high inter-observer agreement. The measurement repeatability was determined with measurements that were acquired during multiple visits. An improvement in accuracy can be achieved with an ultra-broad-bandwidth PS-OCT system since it will provide more data points in-depth, which reduces the influence of discretization and helps to facilitate better fitting of the birefringence data.

6.
Microsyst Nanoeng ; 3: 17033, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31057871

RESUMO

The realization of high-performance tunable absorbers for terahertz frequencies is crucial for advancing applications such as single-pixel imaging and spectroscopy. Based on the strong position sensitivity of metamaterials' electromagnetic response, we combine meta-atoms that support strongly localized modes with suspended flat membranes that can be driven electrostatically. This design maximizes the tunability range for small mechanical displacements of the membranes. We employ a micro-electro-mechanical system technology and successfully fabricate the devices. Our prototype devices are among the best-performing tunable THz absorbers demonstrated to date, with an ultrathin device thickness (~1/50 of the working wavelength), absorption varying between 60% and 80% in the initial state when the membranes remain suspended, and fast switching speed (~27 µs). The absorption is tuned by an applied voltage, with the most marked results achieved when the structure reaches the snap-down state. In this case, the resonance shifts by >200% of the linewidth (14% of the initial resonance frequency), and the absolute absorption modulation measured at the initial resonance can reach 65%. The demonstrated approach can be further optimized and extended to benefit numerous applications in THz technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA