Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animal ; 15(1): 100036, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33516027

RESUMO

Growth rate of cattle depends on their genetic makeup and nutrient intake. Moreover, increased growth rate may lead to increased amino acid (AA) requirements. Therefore, we evaluated the AA content of the empty body and estimated the net AA and energy requirements of purebred and crossbred beef bulls fed rations of different dietary CP concentrations. We performed a comparative slaughter experiment with 24 Nellore and 24 Angus × Nellore (A × N) bulls (8 months; initial shrunk BW: Nellore = 208.0 ±â€¯12.78 kg; A × N = 221.9 ±â€¯14.16 kg). Eight bulls (four Nellore and four A × N) were designated as the reference group, eight bulls (four Nellore and four A × N) were fed to maintenance level and 32 bulls (16 Nellore and 16 A × N) were fed ad libitum. The 32 bulls fed ad libitum were distributed using a completely randomized design in a 2 × 3 factorial scheme with two genetic groups (Nellore or A × N) and three dietary CP contents (100, 120 or 140 g CP/kg DM), being four groups with five bulls and two groups with six bulls. The experimental period lasted for 224 days. There were no interactions (P ≥ 0.056) between the dietary CP contents and genetic groups for any of the response variables. The dietary CP contents did not affect (P ≥ 0.062) the AA content in the empty body (g/kg empty BW [EBW]), with exception for Tryptophan (P = 0.027, linear effect). The dietary CP contents did not affect (P ≥ 0.051) AA content in the empty body (g/100 g of CP), with exception for Alanine (P = 0.013) that responded quadratically to dietary CP increase. The equations to estimate the net Lysine (Lys) and Methionine (Met) requirements (g/100 g of CP) were: Lys = 5.1 × EBW0.0594 and Met = 1.7 × EBW0.0255. Metabolizable Lys and Met to metabolizable energy (ME) ratios decreased as bulls EBW increased. Also, the metabolizable protein to ME ratio decreased as bulls EBW increased. In conclusion, the present study provides useful information regarding net and metabolizable requirements of AA of purebred and crossbred beef bulls. In the future, after the validation of the equations, these results can be used to calculate the AA requirements for growth of purebred and crossbred beef bulls. Nevertheless, it is important to highlight that the small sample size was one limitation of this present experiment.


Assuntos
Aminoácidos , Ração Animal , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Composição Corporal , Peso Corporal , Bovinos/genética , Dieta/veterinária , Proteínas Alimentares/metabolismo , Ingestão de Energia , Masculino , Necessidades Nutricionais
2.
J Anim Physiol Anim Nutr (Berl) ; 102(1): 82-93, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28299852

RESUMO

There is little information regarding the nutritional requirements for dairy heifers, leading the majority of nutrient requirement systems to consider dairy heifers to be similar to beef heifers. Therefore, we evaluated the muscle protein metabolism and physical and chemical body composition of growing Holstein × Gyr heifers and estimated the energy and protein requirements. We performed a comparative slaughter experiment with 20 Holstein × Gyr heifers at an initial body weight of 218 ± 36.5 kg and an average age of 12 ± 1.0 months. Four heifers were designated as the reference group, and the 16 remaining heifers were fed ad libitum. The 16 heifers were distributed using a completely randomized design in a 2 × 2 factorial arrangement with two roughages (corn silage or sugarcane) and two concentrate levels (30 or 50%) for 112 days. Greater (p < 0.05) values for fractional rates of muscle protein synthesis, degradation and accretion were observed for heifers that were fed 50% concentrate. The following equations were obtained to estimate the net energy for gain (NEg ) and net protein for gain (NPg ): NEg (Mcal/day) = 0.0685 × EBW0.75  × EBWG1.095 and NPg (g/day) = 203.8 × EBWG - 14.80 × RE, respectively, in which EBW is the empty body weight, EBWG is the empty body weight gain and RE is the retained energy. We concluded that increased rates of protein turnover are achieved when a greater quality diet is provided. In the future, these results can be used to calculate the nutritional requirements for growth of Holstein × Gyr heifers after equation validation rather than using the recommendations provided by other systems, which use values developed from beef heifers, to determine the nutritional requirements of dairy cattle.


Assuntos
Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Necessidades Nutricionais , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Proteínas Musculares/metabolismo , Saccharum , Silagem/análise , Zea mays
3.
J Dairy Sci ; 98(5): 3224-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25747832

RESUMO

This study investigated the influence of day of gestation (DG) and feeding regimens (FR) on the expression of genes responsible for placenta development, nutrient transfer, and angiogenic factors in Holstein × Gyr cows. Forty pregnant multiparous Holstein × Gyr cows with an average initial body weight of 482±10.8kg and an initial age of 5±0.8 yr were allocated to 1 of 2 FR: ad libitum (AL; n=20) or maintenance level (ML; n=20). Maintenance level was considered to be 1.15% of body weight (dry matter basis) and met 100% of the net energy requirements and AL provided 190% of the total net energy requirements. Cows were slaughtered at 4 DG: 139, 199, 241, and 268d. After the cows were slaughtered, the placenta and uterus were separated and weighed. Caruncles and cotyledons were individually separated, counted, and weighed. Placenta expressed as kilograms and grams per kilogram of empty body weight (EBW) was heavier in ML- than in AL-fed cows at 268d of gestation. Placenta expressed as kilograms and grams per kilogram of EBW was the lightest at 139d of gestation, and the greatest mass was observed at 268d in ML-fed cows. However, in AL-fed cows, the heaviest placenta expressed as grams per kilogram of EBW was observed from 199d of gestation. Placentomes expressed as grams per kilogram of EBW were heavier in ML-fed cows during gestation, and the number of placentomes was greater in ML-fed cows at 268d of gestation. We observed that IGFR1 and IGFR2 were involved in placenta adaptations when ML was provided, as their expression in placentome cells was greater in ML-fed cows at 268d of gestation. The genes responsible for angiogenesis were also greater in ML-fed cows: VEGFA, GUCY1B3, HIFA, FGF2, and NOS3 were altered by FR and DG interaction and they were greater in ML-fed cows at 268d of gestation. In addition, VEGFB and ANGPT2 did not show interactions between FR and DG, but they were greater in ML-fed cows. Thus, we suggest that the placenta from an ML-fed cow develops adaptations to the reduced nutrient supply by altering its structure and gene expression, thereby developing mechanisms for potential increased nutrient transfer efficiency to the fetus.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Expressão Gênica , Idade Gestacional , Placenta/fisiologia , Adaptação Fisiológica , Animais , Peso Corporal , Ingestão de Energia , Feminino , Neovascularização Fisiológica/genética , Necessidades Nutricionais , Tamanho do Órgão , Placenta/anatomia & histologia , Placenta/metabolismo , Gravidez , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/fisiologia , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/fisiologia , Útero/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA