RESUMO
Over the years, osteosarcoma therapy has had a significative improvement with the use of a multidrug regime strategy, increasing the survival rates from less than 20 % to circa 70 %. Different types of development of new antineoplastic agents are critical to achieve irreversible damage to cancer cells, while preserving the integrity of their healthy counterparts. In the present study, complexes with two and three Pd(II) centres linked by the biogenic polyamines: spermine (Pd2SpmCl4) and spermidine (Pd3Spd2Cl6) were tested against non-malignant (osteoblasts, HOb) and cancer (osteosarcoma, MG-63) human cell lines. Either alone or in combination according to the EURAMOS-1 protocol, they were used versus cisplatin as a drug reference. By evaluating the cytotoxic effects of both therapeutic approaches (single and drug combination) in HOb and MG-63 cell lines, the selective anti-tumoral potential is assessed. To understand the different treatments at a molecular level, Synchrotron Radiation Fourier Transform Infrared and Raman microspectroscopies were applied. Principal component analysis and hierarchical cluster analysis are applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug-to-cell impact. The main changes were observed for the B-DNA native conformation to either Z-DNA (higher in the presence of polynuclear complexes) or A-DNA (preferably after cisplatin exposure). Additionally, a higher effect upon variation in proteins content was detected in drug combination when compared to single drug administration proving the efficacy of the EURAMOS-1 protocol with the new drugs tested.
Assuntos
Antineoplásicos , Osteossarcoma , Análise Espectral Raman , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Análise Espectral Raman/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vibração , Espermina/farmacologia , Espermina/química , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Espermidina/farmacologia , Espermidina/química , Análise de Componente Principal , Sobrevivência Celular/efeitos dos fármacosRESUMO
A dinuclear Pt(II) complex with putrescine as bridging polyamine ligand ([Pt2Put2(NH3)4]Cl4) was synthesized and assessed as to its potential anticancer activity against a human non-small cell lung cancer line (A549), as well as towards non-cancer cells (BEAS-2B). This effect was evaluated through in vitro cytotoxicity assays (MTT and SRB) coupled to microFTIR and microRaman spectroscopies, the former delivering information on growth-inhibiting and cytotoxic abilities while the latter provided very specific information on the metabolic impact of the metal agent (at the sub-cellular level). Regarding cancer cells, a major impact of [Pt2Put2(NH3)4]Cl4 was evidenced on cellular proteins and lipids, as compared to DNA, particularly via the Amide I and Amide II signals. The effect of the chelate on non-malignant cells was lower than on malignant ones, evidencing a promising low toxicity towards healthy cells.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Platina/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologiaRESUMO
OBJECTIVES: This study aims to evaluate the effects of cyclic loading on the bending moments and the developed stress state of austenitic and R-phase endodontic files through finite element analysis. MATERIALS AND METHODS: The mechanical properties of two groups of NiTi wires, austenite and R-phase, were measured in samples at two different conditions: uncycled and cycled. The cycled condition was achieved by subjecting samples of the two groups to 80% of the corresponding fatigue life under rotating bending efforts. The measured mechanical properties were then used in the finite element analysis, where the boundary and loading conditions were set to replicate a standard bending test. RESULTS: The results showed that mechanical cycling leads to decreasing stress levels and bending moments in the simulated files, especially in the austenitic ones. In comparison with austenite, R-phase presented a more stable mechanical behavior during cycling. CONCLUSIONS: The results show that the moment and stress calculated for an instrument under bending can be considerably decreased after some cyclic work. CLINICAL RELEVANCE: The fatigue related to the clinical use of an endodontic file decreases the moment (as well as the forces) imposed by the instrument during the shaping of a curved root canal. This decrease is directly related to the type of atomic array present in the alloy.
Assuntos
Ligas Dentárias , Titânio , Desenho de Equipamento , Fadiga , Análise de Elementos Finitos , Humanos , Teste de Materiais , Preparo de Canal Radicular , Estresse MecânicoRESUMO
To improve a DNA vaccine containing the truncated dengue virus serotype 2 (DENV-2) envelope (E) protein and evaluate the influence of precursor membrane (prM) glycoprotein polymorphism on E protein immunogenicity, two vaccine candidates have been constructed by upstream insertion of the DENV-2 and DENV-3 prM genes into the DENV-2 E gene, named pCID2EtD2prM and pCID2EtD3prM, respectively. Both constructs were able to induce antibody production, which were neutralizing against DENV-2 in a murine model. Splenocytes of immunized groups, when challenged with virus, demonstrated Th1 cytokine pattern and proliferation, in addition to the increase of specific T cells. Vaccine candidates pCID2EtD2prM and pCID2EtD3prM confer 70% and 90% protection against DENV-2, respectively. The pCID2EtD3prM plasmid conferred only 40% protection in the lethal challenge with DENV-2. The results demonstrate that DENV-3 prM has a greater influence on the immunogenicity of the E protein and, probably due to its role as a chaperone, these results may be related to the correct folding and, consequently, an increase in the presentation efficiency of produced transcripts.
Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Modelos Animais de Doenças , Glicoproteínas de Membrana , Camundongos , Proteínas do Envelope ViralRESUMO
Aluminum (Al) toxicity is a major problem affecting soil fertility, microbial diversity, and nutrient uptake of plants. Rhizobia response and legume interaction under Al conditions are still unknown; it is important to understand how to develop and improve legume cultivation under Al stress. In this study, rhizobia response was recorded under different Al concentrations. Al effect on rhizobial cells was characterized by combination with different two pH conditions. Symbiosis process was compared between α- and ß-rhizobia inoculated onto soybean varieties. Rhizobial cell numbers was decreased as Al concentration increased. However, induced Al tolerance considerably depended on rhizobia types and their origins. Accordingly, organic acid results were in correlation with growth rate and cell density which suggested that citric acid might be a positive selective force for Al tolerance and plant interaction on rhizobia. Al toxicity delayed and interrupted the plant-rhizobia interaction and the effect was more pronounced under acidic conditions. Burkholderia fungorum VTr35 significantly improved plant growth under acid-Al stress in combination with all soybean varieties. Moreover, plant genotype was an important factor to establish an effective nodulation and nitrogen fixation under Al stress. Additionally, tolerant rhizobia could be applied as an inoculant on stressful agroecosystems. Furthermore, metabolic pathways have still been unknown under Al stress.