Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mater Horiz ; 11(10): 2388-2396, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441222

RESUMO

Magnetoelectric multiferroics, either single-phase or composites comprising ferroelectric/ferromagnetic coupled films, are promising candidates for energy efficient memory computing. However, most of the multiferroic magnetoelectric systems studied so far are based on materials that are not compatible with industrial processes. Doped hafnia is emerging as one of the few CMOS-compatible ferroelectric materials. Thus, it is highly relevant to study the integration of ferroelectric hafnia into multiferroic systems. In particular, ferroelectricity in hafnia, and the eventual magnetoelectric coupling when ferromagnetic layers are grown atop of it, are very much dependent on quality of interfaces. Since magnetic metals frequently exhibit noticeable reactivity when grown onto oxides, it is expected that ferroelectricity and magnetoelectricity might be reduced in multiferroic hafnia-based structures. In this article, we present excellent ferroelectric endurance and retention in epitaxial Hf0.5Zr0.5O2 films grown on buffered silicon using Co as the top electrode. The crucial influence of a thin Pt capping layer grown on top of Co on the ferroelectric functional characteristics is revealed by contrasting the utilization of Pt-capped Co, non-capped Co and Pt. Magnetic control of the imprint electric field (up to 40% modulation) is achieved in Pt-capped Co/Hf0.5Zr0.5O2 structures, although this does not lead to appreciable tuning of the ferroelectric polarization, as a result of its high stability. Computation of piezoelectric and flexoelectric strain-mediated mechanisms of the observed magnetoelectric coupling reveal that flexoelectric contributions are likely to be at the origin of the large imprint electric field variation.

2.
Mater Horiz ; 11(10): 2355-2371, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38477152

RESUMO

Ferroelectric memory devices such as ferroelectric memristors, ferroelectric tunnel junctions, and field-effect transistors are considered among the most promising candidates for neuromorphic computing devices. The promise arises from their defect-independent switching mechanism, low energy consumption and high power efficiency, and important properties being aimed for are reliable switching at high speed, excellent endurance, retention, and compatibility with complementary metal-oxide-semiconductor (CMOS) technology. Binary or doped binary materials have emerged over conventional complex-composition ferroelectrics as an optimum solution, particularly in terms of CMOS compatibility. The current state-of-the-art route to achieving superlative ferroelectric performance of binary oxides is to induce ferroelectricity at the nanoscale, e.g., in ultra-thin films of doped HfO2, ZrO2, Zn1-xMgxO, Al-xScxN, and Bi1-xSmxO3. This short review article focuses on the materials science of emerging new ferroelectric materials, including their different properties such as remanent polarization, coercive field, endurance, etc. The potential of these materials is discussed for neuromorphic applications.

3.
Mater Horiz ; 11(3): 803-812, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010915

RESUMO

In this work, we demonstrate, for the first time, that coupling together the pyroelectric effect, the photovoltaic effect and the plasmonic effect is a novel method to significantly enhance the performance of self-powered photodetectors in the visible region. Photodetectors based on tri-layered heterojunction of n-Si/p-SnO/n-ZnO through the inclusion of silver (Ag) nanoparticles (NPs) at the SnO/ZnO interface were fabricated. The photo-response of the device, with excitation from a chopped 650 nm wavelength laser, was carefully investigated, and it was shown that the photodetector performance is enhanced the most with the inclusion of spheroidal Ag NPs with ∼70 nm diameter. The Al/Si/SnO/Ag NPs/ZnO/ITO device exhibited an optimum responsivity, detectivity and sensitivity of 210.2 mA W-1, 5.47 × 109 Jones and 15.0 × 104, respectively, together with a rise and fall time of 2.3 and 51.3 µs, respectively, at a laser power density of 317 mW cm-2 and at a chopper frequency of 10 Hz. The present photodetectors are more than twice as responsive as the current best-performing ZnO-based pyro-phototronic photodetectors and they also exhibit other competitive features, such as detectivity, and fall and rise times. Therefore, by exploiting the plasmonic effect of the Ag NPs together with the pyroelectric effect in a ZnO film, and the photovoltaic effect at a Si/SnO junction, all in a single device, photodetectors were developed with state-of-the-art performance for the visible region.

4.
Small ; 19(32): e2300607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086105

RESUMO

Self-powered photodetectors (PDs) have been recognized as one of the developing trends of next-generation optoelectronic devices. Herein, it is shown that by introducing a thin layer of SnO film between the Si substrate and the ZnO film, the self-powered photodetector Al/Si/SnO/ZnO/ITO exhibits a stable and uniform violet sensing ability with high photoresponsivity and fast response. The SnO layer introduces a built-in electrostatic field to highly enhance the photocurrent by over 1000%. By analyzing energy diagrams of the p-n junction, the underlying physical mechanism of the self-powered violet PDs is carefully illustrated. A high photo-responsivity (R) of 93 mA W-1 accompanied by a detectivity (D*) of 3.1 × 1010 Jones are observed under self-driven conditions, when the device is exposed to 405 nm excitation laser wavelength, with a laser power density of 36 mW cm-2 and at a chopper frequency of 400 Hz. The Si/SnO/ZnO/ITO device shows an enhancement of 3067% in responsivity when compared to the Al/Si/ZnO/ITO. The photodetector holds an ultra-fast response of ≈ 2 µs, which is among the best self-powered photodetectors reported in the literature based on ZnO.

5.
Adv Sci (Weinh) ; 10(15): e2207390, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36950722

RESUMO

A new approach for the stabilization of the ferroelectric orthorhombic ZrO2 films is demonstrated through nanosecond laser annealing (NLA) of as-deposited Si/SiOx /W(14 nm)/ZrO2 (8 nm)/W(22 nm), grown by ion beam sputtering at low temperatures. The NLA process optimization is guided by COMSOL multiphysics simulations. The films annealed under the optimized conditions reveal the presence of the orthorhombic phase, as confirmed by X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. Macroscopic polarization-electric field hysteresis loops show ferroelectric behavior, with saturation polarization of 12.8 µC cm-2 , remnant polarization of 12.7 µC cm-2 and coercive field of 1.2 MV cm-1 . The films exhibit a wake-up effect that is attributed to the migration of point defects, such as oxygen vacancies, and/or a transition from nonferroelectric (monoclinic and tetragonal phase) to the ferroelectric orthorhombic phase. The capacitors demonstrate a stable polarization with an endurance of 6.0 × 105 cycles, demonstrating the potential of the NLA process for the fabrication of ferroelectric memory devices with high polarization, low coercive field, and high cycling stability.

6.
ACS Appl Mater Interfaces ; 13(43): 51383-51392, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694130

RESUMO

Zirconia- and hafnia-based thin films have attracted tremendous attention in the past decade because of their unexpected ferroelectric behavior at the nanoscale, which enables the downscaling of ferroelectric devices. The present work reports an unprecedented ferroelectric rhombohedral phase of ZrO2 that can be achieved in thin films grown directly on (111)-Nb:SrTiO3 substrates by ion-beam sputtering. Structural and ferroelectric characterizations reveal (111)-oriented ZrO2 films under epitaxial compressive strain exhibiting switchable ferroelectric polarization of about 20.2 µC/cm2 with a coercive field of 1.5 MV/cm. Moreover, the time-dependent polarization reversal characteristics of Nb:SrTiO3/ZrO2/Au film capacitors exhibit typical bell-shaped curve features associated with the ferroelectric domain reversal and agree well with the nucleation limited switching (NLS) model. The polarization-electric field hysteresis loops point to an activation field comparable to the coercive field. Interestingly, the studied films show ferroelectric behavior per se, without the need to apply the wake-up cycle found in the orthorhombic phase of ZrO2. Overall, the rhombohedral ferroelectric ZrO2 films present technological advantages over the previously studied zirconia- and hafnia-based thin films and may be attractive for nanoscale ferroelectric devices.

7.
ACS Appl Mater Interfaces ; 13(29): 35187-35196, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254775

RESUMO

Achieving thermoelectric devices with high performance based on low-cost and nontoxic materials is extremely challenging. Moreover, as we move toward an Internet-of-Things society, a miniaturized local power source such as a thermoelectric generator (TEG) is desired to power increasing numbers of wireless sensors. Therefore, in this work, an all-oxide p-n junction TEG composed of low-cost, abundant, and nontoxic materials, such as n-type ZnO and p-type SnOx thin films, deposited on borosilicate glass substrate is proposed. A type II heterojunction between SnOx and ZnO films was predicted by density functional theory (DFT) calculations and confirmed experimentally by X-ray photoelectron spectroscopy (XPS). Moreover, scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDS) show a sharp interface between the SnOx and ZnO layers, confirming the high quality of the p-n junction even after annealing at 523 K. ZnO and SnOx thin films exhibit Seebeck coefficients (α) of ∼121 and ∼258 µV/K, respectively, at 298 K, resulting in power factors (PF) of 180 µW/m K2 (for ZnO) and 37 µW/m K2 (for SnOx). Moreover, the thermal conductivities of ZnO and SnOx films are 8.7 and 1.24 W/m K, respectively, at 298 K, with no significant changes until 575 K. The four pairs all-oxide TEG generated a maximum power output (Pout) of 1.8 nW (≈126 µW/cm2) at a temperature difference of 160 K. The output voltage (Vout) and output current (Iout) at the maximum power output of the TEG are 124 mV and 0.0146 µA, respectively. This work paves the way for achieving a high-performance TEG device based on oxide thin films.

8.
Sensors (Basel) ; 20(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266489

RESUMO

With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 "Optimising Design for Inspection" (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA