Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aquat Toxicol ; 205: 213-226, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30408655

RESUMO

Acetylcholinesterase (AChE; EC 3.1.1.7) is a serine hydrolase, whose main function is to modulate neurotransmission at cholinergic synapses. It is, therefore, the primary target of some pesticides and heavy metals. Its inhibition in aquatic organisms has been used as an indicator of the presence of these pollutants in water bodies. The present study aimed to characterize physicochemical and kinetic parameters of brain AChE in the benthic fish Hoplosternum littorale and to analyze the in vitro effects of pesticides (dichlorvos, diazinon, chlorpyrifos, parathion-methyl, temephos, carbaryl, carbofuran, aldicarb, diflubenzuron, novaluron and pyriproxyfen) and metal ions (As3+, Cd2+, Cu2+, Fe2+, Mn2+, Mg2+, K+, Pb2+, Hg2+, Zn2+) investigating the potential of this enzyme as environmental biomarker based on current regulations. Specific substrates and inhibitors have indicated AChE to be the predominant cholinesterase (ChE) in the brain of H. littorale. Peak activity was observed at pH 8.0 and 30 °C. The enzymatic activity is otherwise moderately thermostable (≈ 50% activity at 45 °C). The enzyme can reduce the activation energy of acetylthiocholine hydrolysis reaction to 8.34 kcal mol-1 while reaching a rate enhancement of 106. Among the pesticides under study, dichlorvos presented an IC50 value below the maximum concentrations allowed by legislation. This study presents the first report on the inhibition of brain AChE activity from Siluriformes by the pesticides novaluron and pyriproxyfen. Mercury ion also exerted a strong inhibitory effect on its enzymatic activity. The H. littorale enzyme thus has the potential to function as an in vitro biomarker for the presence of the pesticide dichlorvos as well as mercury in areas of mining and industrial discharge.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Peixes-Gato/fisiologia , Monitoramento Ambiental/métodos , Praguicidas/toxicidade , Animais , Encéfalo/enzimologia , Ativação Enzimática/efeitos dos fármacos , Íons/análise , Íons/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Praguicidas/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Aquat Toxicol ; 197: 109-121, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29462762

RESUMO

Enzyme biomarkers from several aquatic organisms have been used for assessing the exposure to contaminants at sublethal levels. Amongst them, the cholinesterases are commonly extracted from several organisms to evaluate/measure organophosphate and carbamate neurotoxic effects. Acetylcholinesterase (AChE; EC 3.1.1.7) is an enzyme of the group of serine esterases that acts on the hydrolysis of the neurotransmitter acetylcholine allowing the intermittence of the nerve impulses responsible for the neuronal communication. This enzyme is the main target for the action of some pesticides and the inhibition of its activity in bivalve mollusks may be used as biomarker due to their filter-feeding habit. In this context, the present study aimed to characterize physicochemical and kinetic parameters of the AChE extracted from gills and viscera of the oyster Crassostrea rhizophorae and investigate the in vitro effect of pesticides (dichlorvos, diazinon, chlorpyrifos, methyl-parathion, temephos, carbaryl, carbofuran, aldicarb, diflubenzuron and novaluron) in search for assessing its potential as biomarker. Specific substrates and inhibitors evidenced the predominance of AChE in both tissues. The optimum pH found for gills and viscera AChE were 8.0 and 8.5, respectively. The maximum peak of activity occurred at 70 °C for gill AChE and 75 °C for viscera AChE. The enzymes of both tissues presented remarkable thermostability. The Michaelis-Menten constant for both enzymes were 1.32 ±â€¯0.20 mM for gills and 0.43 ±â€¯0.12 mM for viscera. The Vmax values for gills and viscera were 53.57 ±â€¯1.72 and 27.71 ±â€¯1.15 mU/mg, respectively. The enzymes were able to reduce the activation energy to 9.75 kcal mol-1 (gills) and 11.87 kcal mol-1 (viscera) obtaining rate enhancements of 3.57 × 105 and 1.01 × 104, respectively, in relation to non-catalyzed reactions. Among the pesticides under study, the carbamates carbaryl and carbofuran exerted the strongest inhibitory effects on the enzyme activity achieving important degrees of inhibition at concentrations below national and international current regulations. The first observation of the effects of benzoylurea pesticides (diflubenzuron and novaluron) on AChE from mollusks is reported here. The gills AChE of C. rhizophorae showed potential to be specific biomarker for the carbamate carbaryl while the viscera AChE showed it for carbofuran. According to their features, these enzymes may be proposed as promising tools for estuarine monitoring as well as biocomponent of biosensor devices.


Assuntos
Acetilcolinesterase/metabolismo , Crassostrea/enzimologia , Monitoramento Ambiental , Estuários , Temperatura , Animais , Biocatálise/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Praguicidas/toxicidade , Especificidade por Substrato/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
3.
Aquat Toxicol ; 177: 182-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27288599

RESUMO

This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68µM (dichlorvos); 4.35µM (carbaryl) and 0.28µM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7µM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/enzimologia , Ciclídeos/metabolismo , Metais Pesados/toxicidade , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Inibidores da Colinesterase/metabolismo , Concentração Inibidora 50 , Íons/metabolismo , Cinética , Metais Pesados/metabolismo , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Aquat Toxicol ; 126: 191-7, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23220411

RESUMO

Brain acetylcholinesterase (AChE; EC 3.1.1.7) from peacock bass (Cichla ocellaris) was characterized and the effect of organophosphorus and carbamate pesticides as well as ions and heavy metals was evaluated. The kinetic parameters K(m) and V(max) were determined as 0.769 mM and 0.189 U/mg of protein respectively. Optimal pH and temperature were found to be 8.0 and 45°C. The enzyme retained approximately half of the activity after incubation at 50°C for 30 min. Total cholinesterase activity on brain of this species can be ascribed to AChE according to selective inhibitors analysis (neostigmine, eserine and BW284c5 reduced its activity whereas no effect was noticed for Iso-OMPA). Seven pesticides (five organophosphates: dichlorvos, diazinon, chlorpyrifos, temephos, tetraethyl pyrophosphate - TEPP and two carbamates: carbaryl and carbofuran) showed inhibitory effects on C. ocellaris AChE. However, the strongest effect was observed with carbofuran (IC(50)=0.21 µM and K(i)=2.57 × 10(-3) µM). The following ions (1 mM) showed to inhibit its activity (decrescent order): Hg(2+)>As(3+)>Cu(2+)>Zn(2+). EDTA(2-) did not affect enzyme activity. The present study provides assay conditions and data to suggest this enzyme as in vitro biomarker of organophosphorus and carbamate pesticides in routine environmental screening programs.


Assuntos
Acetilcolinesterase/toxicidade , Bass , Encéfalo/efeitos dos fármacos , Metais/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Encéfalo/enzimologia , Ativação Enzimática/efeitos dos fármacos , Íons/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA