Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cytotherapy ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38762805

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs) represent a new axis of intercellular communication that can be harnessed for therapeutic purposes, as cell-free therapies. The clinical application of mesenchymal stromal cell (MSC)-derived EVs, however, is still in its infancy and faces many challenges. The heterogeneity inherent to MSCs, differences among donors, tissue sources, and variations in manufacturing conditions may influence the release of EVs and their cargo, thus potentially affecting the quality and consistency of the final product. We investigated the influence of cell culture and conditioned medium harvesting conditions on the physicochemical and proteomic profile of human umbilical cord MSC-derived EVs (hUCMSC-EVs) produced under current good manufacturing practice (cGMP) standards. We also evaluated the efficiency of the protocol in terms of yield, purity, productivity, and expression of surface markers, and assessed the biodistribution, toxicity and potential efficacy of hUCMSC-EVs in pre-clinical studies using the LPS-induced acute lung injury model. METHODS: hUCMSCs were isolated from a cord tissue, cultured, cryopreserved, and characterized at a cGMP facility. The conditioned medium was harvested at 24, 48, and 72 h after the addition of EV collection medium. Three conventional methods (nanoparticle tracking analysis, transmission electron microscopy, and nanoflow cytometry) and mass spectrometry were used to characterize hUCMSC-EVs. Safety (toxicity of single and repeated doses) and biodistribution were evaluated in naive mice after intravenous administration of the product. Efficacy was evaluated in an LPS-induced acute lung injury model. RESULTS: hUCMSC-EVs were successfully isolated using a cGMP-compliant protocol. Comparison of hUCMSC-EVs purified from multiple harvests revealed progressive EV productivity and slight changes in the proteomic profile, presenting higher homogeneity at later timepoints of conditioned medium harvesting. Pooled hUCMSC-EVs showed a non-toxic profile after single and repeated intravenous administration to naive mice. Biodistribution studies demonstrated a major concentration in liver, spleen and lungs. HUCMSC-EVs reduced lung damage and inflammation in a model of LPS-induced acute lung injury. CONCLUSIONS: hUCMSC-EVs were successfully obtained following a cGMP-compliant protocol, with consistent characteristics and pre-clinical safety profile, supporting their future clinical development as cell-free therapies.

2.
Front Med (Lausanne) ; 8: 767291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869480

RESUMO

Background: The patients with coronavirus disease 2019 (COVID-19) associated with severe acute respiratory distress syndrome (ARDS) may require prolonged mechanical ventilation which often results in lung fibrosis, thus worsening the prognosis and increasing fatality rates. A mesenchymal stromal cell (MSC) therapy may decrease lung inflammation and accelerate recovery in COVID-19. In this context, some studies have reported the effects of MSC therapy for patients not requiring invasive ventilation or during the first hours of tracheal intubation. However, this is the first case report presenting the reduction of not only lung inflammation but also lung fibrosis in a critically ill long-term mechanically ventilated patient with COVID-19. Case Presentation: This is a case report of a 30-year-old male patient with COVID-19 under invasive mechanical ventilation for 14 days in the intensive care unit (ICU), who presented progressive clinical deterioration associated with lung fibrosis. The symptoms onset was 35 days before MSC therapy. The patient was treated with allogenic human umbilical-cord derived MSCs [5 × 107 (2 doses 2 days interval)]. No serious adverse events were observed during and after MSC administration. After MSC therapy, PaO2/FiO2 ratio increased, the need for vasoactive drugs reduced, chest CT scan imaging, which initially showed signs of bilateral and peripheral ground-glass, as well as consolidation and fibrosis, improved, and the systemic mediators associated with inflammation decreased. Modulation of the different cell populations in peripheral blood was also observed, such as a reduction in inflammatory monocytes and an increase in the frequency of patrolling monocytes, CD4+ lymphocytes, and type 2 classical dendritic cells (cDC2). The patient was discharged 13 days after the cell therapy. Conclusions: Mesenchymal stromal cell therapy may be a promising option in critically ill patients with COVID-19 presenting both severe lung inflammation and fibrosis. Further clinical trials could better assess the efficacy of MSC therapy in critically ill patients with COVID-19 with lung fibrosis associated with long-term mechanical ventilation.

3.
Stem Cell Res Ther ; 12(1): 425, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315546

RESUMO

The COVID-19 pandemic, caused by the rapid global spread of the novel coronavirus (SARS-CoV-2), has caused healthcare systems to collapse and led to hundreds of thousands of deaths. The clinical spectrum of COVID-19 is not only limited to local pneumonia but also represents multiple organ involvement, with potential for systemic complications. One year after the pandemic, pathophysiological knowledge has evolved, and many therapeutic advances have occurred, but mortality rates are still elevated in severe/critical COVID-19 cases. Mesenchymal stromal cells (MSCs) can exert immunomodulatory, antiviral, and pro-regenerative paracrine/endocrine actions and are therefore promising candidates for MSC-based therapies. In this review, we discuss the rationale for MSC-based therapies based on currently available preclinical and clinical evidence of safety, potential efficacy, and mechanisms of action. Finally, we present a critical analysis of the risks, limitations, challenges, and opportunities that place MSC-based products as a therapeutic strategy that may complement the current arsenal against COVID-19 and reduce the pandemic's unmet medical needs.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , COVID-19/terapia , Humanos , Pandemias
4.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804922

RESUMO

Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), remains a serious public health problem for which there is no effective treatment in the chronic stage. Intense cardiac fibrosis and inflammation are hallmarks of chronic Chagas disease cardiomyopathy (CCC). Previously, we identified upregulation of circulating and cardiac miR-21, a pro-fibrotic microRNA (miRNA), in subjects with CCC. Here, we explored the potential role of miR-21 as a therapeutic target in a model of chronic Chagas disease. PCR array-based 88 microRNA screening was performed in heart samples obtained from C57Bl/6 mice chronically infected with T. cruzi and serum samples collected from CCC patients. MiR-21 was found upregulated in both human and mouse samples, which was corroborated by an in silico analysis of miRNA-mRNA target prediction. In vitro miR-21 functional assays (gain-and loss-of-function) were performed in cardiac fibroblasts, showing upregulation of miR-21 and collagen expression upon transforming growth factor beta 1 (TGFß1) and T. cruzi stimulation, while miR-21 blockage reduced collagen expression. Finally, treatment of T. cruzi-infected mice with locked nucleic acid (LNA)-anti-miR-21 inhibitor promoted a significant reduction in cardiac fibrosis. Our data suggest that miR-21 is a mediator involved in the pathogenesis of cardiac fibrosis and indicates the pharmacological silencing of miR-21 as a potential therapeutic approach for CCC.


Assuntos
Cardiomiopatia Chagásica/terapia , MicroRNAs/genética , Terapêutica com RNAi/métodos , Animais , Células Cultivadas , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Colágeno/genética , Colágeno/metabolismo , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Regulação para Cima
5.
Stem Cell Res ; 41: 101630, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31706097

RESUMO

Human-induced pluripotent stem cell (hiPSC) CBTCi001-A line was generated from a healthy 30-year old male dermal fibroblasts using non-integrative reprogramming method using episomal-based plasmids expressing OCT4, SOX2, KLF4, and MYCL. Characterization of CBTCi001-A was confirmed by the expression of typical markers of pluripotency and differentiation potential in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular/citologia , Derme/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Doadores de Tecidos , Adulto , Diferenciação Celular , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Reprodutibilidade dos Testes
6.
Stem Cell Res ; 39: 101488, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31272037

RESUMO

Autism spectrum disorders (ASDs) are a group of diseases that affect social interaction, communication and behavior. Molecular mechanisms involved in the pathogenesis of ASDs are complex due to genetic heterogeneity. Recently, pathogenic variants of SCN2A have been strongly associated with ASDs. Here, we generated iPSCs from a patient with ASD and a heterozygous nonsense mutation in SCN2A, by reprogramming mesenchymal stromal cells with non-integrating vectors. The generated iPSC line expresses pluripotency markers, presents a normal karyotype and is able to differentiate into the three germ layers. This iPSC line is a useful tool for modeling ASD and drug screening studies.


Assuntos
Transtorno do Espectro Autista/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Transtorno do Espectro Autista/genética , Linhagem Celular , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Citometria de Fluxo , Haploinsuficiência/genética , Haploinsuficiência/fisiologia , Humanos , Cariótipo , Repetições de Microssatélites/genética , Mutação/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
Stem Cell Res ; 38: 101454, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078962

RESUMO

Sickle cell disease (SCD) is one of the most prevalent and severe monogenetic disorders. Previously, we generated iPS cell lines from SCD patients. Here, we generated iPS cell lines from three age-, ethnicity- and gender-matched healthy individuals as control cell lines. Cell reprogramming was performed using erythroblasts expanded from PBMC by a non-integrative method. SCD-iPSC controls expressed pluripotency markers, presented a normal karyotype, were able to differentiate into the three germ layers in embryoid body spontaneous differentiation and confirmed to be integration-free. The cell lines generated here may be used as matched healthy controls for SCD studies.


Assuntos
Anemia Falciforme , Técnicas de Reprogramação Celular , Eritroblastos , Células-Tronco Pluripotentes Induzidas/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Técnicas de Cultura de Células , Linhagem Celular , Eritroblastos/metabolismo , Eritroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia
9.
Cytotechnology ; 70(2): 577-591, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28866844

RESUMO

Mesenchymal stem cells (MSC) are promising tools in the fields of cell therapy and regenerative medicine. In addition to their differentiation potential, MSC have the ability to secrete bioactive molecules that stimulate tissue regeneration. Thus, the overexpression of cytokines and growth factors may enhance the therapeutic effects of MSC. Here we generated and characterized mouse bone marrow MSC lines overexpressing hG-CSF or hIGF-1. MSC lines overexpressing hG-CSF or hIGF-1 were generated through lentiviral vector mediated gene transfer. The expression of hG-CSF or hIGF-1 genes in the clones produced was quantified by qRT-PCR, and the proteins were detected in the cell supernatants by ELISA. The cell lines displayed cell surface markers and differentiation potential into adipocytes, osteocytes and chondrocytes similar to the control MSC cell lines, indicating the conservation of their phenotype even after genetic modification. IGF-1 and G-CSF transgenic cells maintained immunosuppressive activity. Finally, we performed a comparative gene expression analysis by qRT-PCR array in the cell lines expressing hIGF-1 and hG-CSF when compared to the control cells. Our results demonstrate that the cell lines generated may be useful tools for cell therapy and are suitable for testing in disease models.

10.
Cytotherapy ; 19(10): 1189-1196, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760352

RESUMO

BACKGROUND AIMS: The potential of cell therapies to improve neurological function in subjects with spinal cord injury (SCI) is currently under investigation. In this context, the choice of cell type, dose, route and administration regimen are key factors. Mesenchymal stromal cells (MSCs) can be easily obtained, expanded and are suitable for autologous transplantation. Here we conducted a pilot study that evaluated safety, feasibility and potential efficacy of intralesional MSCs transplantation performed through image-guided percutaneous injection, in subjects with chronic complete SCI. METHODS: Five subjects with chronic traumatic SCI (>6 months), at thoracic level, classified as American Spinal Cord Injury Association impairment scale (AIS) grade A, complete injury, were included. Somatosensory evoked potentials (SSEP), spinal magnetic resonance imaging (MRI) and urodynamics were assessed before and after treatment. Autologous MSCs were injected directly into the lesion site through percutaneous injection guided by computerized tomography (CT). RESULTS: Tomography-guided percutaneous cell transplantation was a safe procedure without adverse effects. All subjects displayed improvements in spinal cord independence measure (SCIM) scores and functional independence measure (FIM), mainly due to improvements in bowel movements and regularity. Three subjects showed improved sensitivity to tactile stimulation. Two subjects improved AIS grade to B, incomplete injury, although this was sustained in only one of them during the study follow-up. CONCLUSION: Autologous bone marrow MSC transplantation, performed through CT-guided percutaneous injection, was shown to be safe and feasible. Further studies are required to demonstrate efficacy of this therapeutic scheme.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Traumatismos da Medula Espinal/terapia , Adulto , Potenciais Somatossensoriais Evocados/fisiologia , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Projetos Piloto , Traumatismos da Medula Espinal/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Transplante Autólogo/métodos , Resultado do Tratamento
11.
Stem Cells Int ; 2017: 3282656, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769980

RESUMO

Therapies based on transplantation of mesenchymal stromal cells (MSC) hold promise for the management of inflammatory disorders. In chronic Chagas disease cardiomyopathy (CCC), caused by chronic infection with Trypanosoma cruzi, the exacerbated immune response plays a critical pathophysiological role and can be modulated by MSC. Here, we investigated the role of galectin-3 (Gal-3), a beta-galactoside-binding lectin with several actions on immune responses and repair process, on the immunomodulatory potential of MSC. Gal-3 knockdown in MSC did not affect the immunophenotype or differentiation potential. However, Gal-3 knockdown MSC showed decreased proliferation, survival, and migration. Additionally, when injected intraperitoneally into mice with CCC, Gal-3 knockdown MSC showed impaired migration in vivo. Transplantation of control MSC into mice with CCC caused a suppression of cardiac inflammation and fibrosis, reducing expression levels of CD45, TNFα, IL-1ß, IL-6, IFNγ, and type I collagen. In contrast, Gal-3 knockdown MSC were unable to suppress the immune response or collagen synthesis in the hearts of mice with CCC. Finally, infection with T. cruzi demonstrated parasite survival in wild-type but not in Gal-3 knockdown MSC. These findings demonstrate that Gal-3 plays a critical role in MSC survival, proliferation, migration, and therapeutic potential in CCC.

12.
Am J Pathol ; 187(5): 1134-1146, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28322201

RESUMO

Chronic Chagas disease cardiomyopathy, caused by Trypanosoma cruzi infection, is a major cause of heart failure in Latin America. Galectin-3 (Gal-3) has been linked to cardiac remodeling and poor prognosis in heart failure of different etiologies. Herein, we investigated the involvement of Gal-3 in the disease pathogenesis and its role as a target for disease intervention. Gal-3 expression in mouse hearts was evaluated during T. cruzi infection by confocal microscopy and flow cytometry analysis, showing a high expression in macrophages, T cells, and fibroblasts. In vitro studies using Gal-3 knockdown in cardiac fibroblasts demonstrated that Gal-3 regulates cell survival, proliferation, and type I collagen synthesis. In vivo blockade of Gal-3 with N-acetyl-d-lactosamine in T. cruzi-infected mice led to a significant reduction of cardiac fibrosis and inflammation in the heart. Moreover, a modulation in the expression of proinflammatory genes in the heart was observed. Finally, histological analysis in human heart samples obtained from subjects with Chagas disease who underwent heart transplantation showed the expression of Gal-3 in areas of inflammation, similar to the mouse model. Our results indicate that Gal-3 plays a role in the pathogenesis of experimental chronic Chagas disease, favoring inflammation and fibrogenesis. Moreover, by demonstrating Gal-3 expression in human hearts, our finding reinforces that this protein could be a novel target for drug development for Chagas cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Galectina 3/metabolismo , Miocardite/metabolismo , Miocárdio/patologia , Acetilgalactosamina/farmacologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Doença Crônica , Colágeno Tipo I/biossíntese , Fibrose/etiologia , Fibrose/metabolismo , Galectina 3/antagonistas & inibidores , Transplante de Coração , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/etiologia , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA