Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11242, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755230

RESUMO

The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.


Assuntos
Eritrócitos , Plasmodium falciparum , Proteômica , Proteínas de Protozoários , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Humanos , Proteômica/métodos , Malária Falciparum/parasitologia , Malária Falciparum/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Ascorbato Peroxidases/metabolismo , Ligação Proteica , Biotinilação , Endonucleases , Peptídeos , Proteínas , Enzimas Multifuncionais
2.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500883

RESUMO

Pequi oil (Caryocar brasiliense) contains bioactive compounds capable of modulating the inflammatory process; however, its hydrophobic characteristic limits its therapeutic use. The encapsulation of pequi oil in nanoemulsions can improve its biodistribution and promote its immunomodulatory effects. Thus, the objective of the present study was to formulate pequi oil-based nanoemulsions (PeNE) to evaluate their biocompatibility, anti-inflammatory, and antinociceptive effects in in vitro (macrophages­J774.16) and in vivo (Rattus novergicus) models. PeNE were biocompatible, showed no cytotoxic and genotoxic effects and no changes in body weight, biochemistry, or histology of treated animals at all concentrations tested (90−360 µg/mL for 24 h, in vitro; 100−400 mg/kg p.o. 15 days, in vivo). It was possible to observe antinociceptive effects in a dose-dependent manner in the animals treated with PeNE, with a reduction of 27 and 40% in the doses of 100 and 400 mg/kg of PeNE, respectively (p < 0.05); however, the treatment with PeNE did not induce edema reduction in animals with carrageenan-induced edema. Thus, the promising results of this study point to the use of free and nanostructured pequi oil as a possible future approach to a preventive/therapeutic complementary treatment alongside existing conventional therapies for analgesia.

3.
Pharmaceutics ; 14(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015189

RESUMO

Immunogenic cell death (ICD) is a modality of regulated cell death that is sufficient to promote an adaptive immune response against antigens of the dying cell in an immunocompetent host. An important characteristic of ICD is the release and exposure of damage-associated molecular patterns, which are potent endogenous immune adjuvants. As the induction of ICD can be achieved with conventional cytotoxic agents, it represents a potential approach for the immunotherapy of cancer. Here, different aspects of ICD in cancer biology and treatment are reviewed.

4.
Nanomaterials (Basel) ; 12(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35683711

RESUMO

Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.

5.
Prog Neuropsychopharmacol Biol Psychiatry ; 79(Pt B): 105-111, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28602852

RESUMO

Repeated ethanol (EtOH) consumption induces neurological disorders in humans and is considered an important public health problem. The physiological effects of EtOH are dose- and time-dependent, causing relevant changes in the social behavior. In addition, alcohol-induced oxidative stress has been proposed as a key mechanism involved in EtOH neurotoxicity. Here we investigate for the first time whether repeated EtOH exposure (REE) alters the social behavior of zebrafish and influences brain oxidation processes. Animals were exposed to water (control group) or 1% (v/v) EtOH (EtOH group) for 8 consecutive days (20min per day). EtOH was added directly to the tank water. At day 9, the social behavior and biochemical parameters were assessed. REE increased shoal cohesion by reducing inter-fish and farthest neighbor distances. SOD and CAT activities, as well as NPSH levels decreased in brain tissue. Moreover, REE increased lipid peroxidation suggesting oxidative damage. In summary, changes in oxidation processes may play a role in the CNS effects of EtOH, influencing the social behavior of zebrafish. Furthermore, in a translational neuroscience perspective, our data reinforces the utility of zebrafish to clarify the biochemical and behavioral effects of intermittent EtOH administration.


Assuntos
Transtornos Relacionados ao Uso de Álcool/metabolismo , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Comportamento Social , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Peixe-Zebra
6.
Neurosci Lett ; 613: 19-24, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26724225

RESUMO

Taurine (TAU) is an amino sulfonic acid with several functions in central nervous system. Mounting evidence suggests that it acts in osmoregulation, neuromodulation and also as an inhibitory neurotransmitter. However, the effects of TAU on behavioral functions, especially on anxiety-related parameters, are limited. The adult zebrafish is a suitable model organism to examine anxiety-like behaviors since it presents neurotransmitter systems and behavioral functions evolutionary conserved. Anxiety in zebrafish can be measured by different tasks, analyzing the habituation to novelty, as well as the response to brightly lit environments. The aim of this study was to investigate whether acute TAU treatment alters anxiety-like behavior in zebrafish using the novel tank and the light-dark tests. Fish were individually treated with TAU (42, 150, and 400mg/L) for 1h and the behaviors were further analyzed for 6min in the novel tank or in the light-dark test. Control fish were handled in a similar manner, but kept only in home tank water. Although TAU did not alter locomotor and vertical activities, all concentrations significantly increased shuttling and time spent in lit compartment. Moreover, TAU 150 group showed a significant decrease in the number of risk assessment episodes. Overall, these data suggest that TAU exerts an anxiolytic-like effect in zebrafish and the comparative analysis of behavior using different tasks is an interesting strategy for neuropsychiatric studies related to anxiety in this species.


Assuntos
Ansiedade/psicologia , Aprendizagem da Esquiva/efeitos dos fármacos , Luz , Atividade Motora/efeitos dos fármacos , Taurina/farmacologia , Animais , Escuridão , Taurina/metabolismo , Peixe-Zebra
7.
Behav Processes ; 122: 1-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524408

RESUMO

We investigate the behavioural responses of wild type (WT) and leopard (leo) zebrafish elicited by alarm substances of conspecifics at three contexts: during the exposure period (Experiment 1); after exposure, in habituation to novelty (Experiment 2); or after exposure, in the light-dark preference test (Experiment 3), and analyse their influence on pigment response. During the exposure, leo showed decreased vertical drifts, increased number and duration of erratic movements, while WT had increased erratic movements and latency to enter the top. In the novel tank, we observed that angular velocity decreased in WT exposed to alarm substance, which also presented increased fear responses. Contrastingly, leo increased the number of entries and time in top, indicating differences in habituation profile. Alarm substance increased the number of erratic movements in the light-dark test, but elicited different responses between strains in scototaxis, latency to enter the dark compartment and risk assessment episodes. Moreover, the body colour of zebrafish did not change after alarm substance exposure. Principal component analyses suggest that burst swimming, anxiety-like behaviours, and locomotion/exploration were the components that most accounted for total variances of Experiments 1, 2, and 3, respectively. We conclude that chemical cue from conspecifics triggers strain- and context-dependent responses.


Assuntos
Comportamento Animal/fisiologia , Medo/efeitos dos fármacos , Atividade Motora/fisiologia , Peixe-Zebra/fisiologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , Medo/psicologia , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Movimento/efeitos dos fármacos , Movimento/fisiologia , Natação/fisiologia
8.
Pharmacol Biochem Behav ; 141: 18-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26631619

RESUMO

Alcohol is a potent agent for eliciting aggression in vertebrates. Taurine (TAU) is an amino sulfonic acid with pleiotropic actions on brain function. It is one of the most abundant molecules present in energy drinks frequently used as mixers for alcoholic beverages. However, the combined effects of TAU and ethanol (EtOH) on behavioral parameters such as aggression are poorly understood. Considering that zebrafish is a suitable vertebrate to assess agonistic behaviors using noninvasive protocols, we investigate whether TAU modulates EtOH-induced aggression in zebrafish using the mirror-induced aggression (MIA) test. Since body color can be altered by pharmacological agents and may be indicative of emotional state, we also evaluated the actions of EtOH and TAU on pigment response. Fish were acutely exposed to TAU (42, 150, and 400mg/L), EtOH (0.25%), or cotreated with both molecules for 1h and then placed in the test apparatus for 6min. EtOH, TAU 42, TAU 400, TAU 42/EtOH and TAU 400/EtOH showed increased aggression, while 150mg/L TAU only increased the latency to attack the mirror. This same concentration also prevented EtOH-induced aggression, suggesting that it antagonizes the effects of acute alcohol exposure. Representative ethograms revealed the existence of different aggressive patterns and our results were confirmed by an index used to estimate aggression in the MIA test. TAU did not alter pigment intensity, while EtOH and all cotreated groups presented a substantial increase in body color. Overall, these data show a biphasic effect of TAU on EtOH-induced aggression of zebrafish, which is not necessarily associated with changes in body color.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Taurina/farmacologia , Peixe-Zebra/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA