Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dalton Trans ; 52(16): 5176-5191, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36970749

RESUMO

Nitrosyl ruthenium complexes are promising platforms for nitric oxide (NO) and nitroxyl (HNO) release, which exert their therapeutic application. In this context, we developed two polypyridinic compounds with the general formula cis-[Ru(NO)(bpy)2(L)]n+, where L is an imidazole derivative. These species were characterized by spectroscopic and electrochemical techniques, including XANES/EXAFS experiments, and further supported by DFT calculations. Interestingly, assays using selective probes evidenced that both complexes can release HNO on reaction with thiols. This finding was biologically validated by HIF-1α detection. The latter protein is related to angiogenesis and inflammation processes under hypoxic conditions, which is selectively destabilized by nitroxyl. These metal complexes also presented vasodilating properties using isolated rat aorta rings and demonstrated antioxidant properties in free radical scavenging experiments. Based on these results, the new nitrosyl ruthenium compounds showed promising characteristics as potential therapeutic agents for the treatment of cardiovascular conditions such as atherosclerosis, deserving further investigation.


Assuntos
Complexos de Coordenação , Rutênio , Animais , Ratos , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Rutênio/química , Compostos de Sulfidrila/química , Doenças Cardiovasculares
2.
J Inorg Biochem ; 228: 111666, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923187

RESUMO

This study aimed to investigate the synthesis and potential vasodilator effect of a novel ruthenium complex, cis-[Ru(bpy)2(2-MIM)(NO2)]PF6 (bpy = 2,2'-bipyridine and 2-MIM = 2-methylimidazole) (FOR711A), containing an imidazole derivative via an in silico molecular docking model using ß1 H-NOX (Heme-nitric oxide/oxygen binding) domain proteins of reduced and oxidized soluble guanylate cyclase (sGC). In addition, pharmacokinetic properties in the human organism were predicted through computational simulations and the potential for acute irritation of FOR711A was also investigated in vitro using the hen's egg chorioallantoic membrane (HET-CAM). FOR711A interacted with sites of the ß1 H-NOX domain of reduced and oxidized sGC, demonstrating shorter bond distances to several residues and negative values of total energy. The predictive study revealed molar refractivity (RM): 127.65; Log Po/w = 1.29; topological polar surface area (TPSA): 86.26 Å2; molar mass (MM) = 541.55 g/mol; low solubility, high unsaturation index, high gastrointestinal absorption; toxicity class 4; failure to cross the blood-brain barrier and to react with cytochrome P450 (CYP) enzymes CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4. After the HET-CAM assay, the FOR711A complex was classified as non-irritant (N.I.) and its vasodilator effect was confirmed through greater evidence of blood vessels after the administration and ending of the observation period of 5 min. These results suggest that FOR711A presented a potential stimulator/activator effect of sGC via NO/sGC/cGMP. However, results indicate it needs a vehicle for oral administration.


Assuntos
Complexos de Coordenação/química , Óxido Nítrico/química , Rutênio/química , Vasodilatadores/química , Vasodilatadores/farmacologia , Animais , Galinhas , Membrana Corioalantoide/metabolismo , Heme/química , Humanos , Imidazóis/química , Simulação de Acoplamento Molecular/métodos , Óxido Nítrico/metabolismo , Oxigênio/química , Domínios Proteicos , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/metabolismo
3.
Toxicon ; 202: 46-52, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34516995

RESUMO

Acute kidney injury pathogenesis in envenoming by snakes is multifactorial and involves immunologic reactions, hemodynamic disturbances, and direct nephrotoxicity. Sildenafil (SFC), a phosphodiesterase 5 inhibitor, has been reported to protect against pathological kidney changes. OBJECTIVE: This study aimed to investigate the protective effect of sildenafil against Bothrops alternatus snake venom (BaV)-induced nephrotoxicity. METHODS: Kidneys from Wistar rats (n = 6, weighing 260-300 g) were isolated and divided into four groups: (1) perfused with a modified Krebs-Henseleit solution (MKHS) containing 6 g% of bovine serum albumin; (2) administered 3 µg/mL SFC; (3) perfused with 3 µg/mL BaV; and (4) administered SFC + BaV, both at 3 µg/mL. Subsequently, the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and percentage of electrolyte tubular sodium and chloride transport (%TNa+, %TCl-, respectively) were evaluated. The cyclic guanosine monophosphate (cGMP) levels were analyzed in the perfusate, and the kidneys were removed to perform oxidative stress and histopathological analyses. RESULTS: All renal parameters evaluated were reduced with BaV. In the SFC + BaV group, SFC restored PP to normal values and promoted a significant increase in %TNa+ and %TCl-. cGMP levels were increased in the SFC + BaV group. The oxidative stress biomarkers, malondialdehyde (MDA) and glutathione (GSH), were reduced by BaV. In the SFC + BaV group, a decrease in MDA without an increase in GSH was observed. These findings were confirmed by histological analysis, which showed improvement mainly in tubulis. CONCLUSION: Our data suggest the involvement of phosphodiesterase-5 and cGMP in BaV-induced nephrotoxicity since its effects were attenuated by the administration of SFC.


Assuntos
Bothrops , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Rim , Inibidores da Fosfodiesterase 5/uso terapêutico , Ratos , Ratos Wistar , Citrato de Sildenafila/uso terapêutico , Venenos de Serpentes/toxicidade
4.
Toxicon ; 190: 31-38, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33307108

RESUMO

The envenomation caused by the Bothrops pauloensis snake leads to severe local and systemic effects including acute kidney injury. In this study, we investigated the renal effects by phospholipases A2 (PLA2s), divided into two main subgroups, Asp-49 and Lys-49, isolated from the Bothrops pauloensis snake venom (BpV) in isolated rat kidney system. Both PLA2s (3 µg/mL), added alone to the perfusion system and analyzed for 120 min, had significant effects on isolated rat kidney. Asp-49 reduced Glomerular Filtration Rate (GFR) at 60, 90 and 120 min, and the percentage of total tubular sodium transport (%TNa+) and potassium transport (%TK+) at 120 min. Lys-49 increased Perfusion Pressure (PP) at 120 min and reduced GFR, %TNa+ and the percentage of total tubular chloride transport (%TCl-) at 60, 90 and 120 min. Cytokine release in the kidney tissues were increased with Asp-49 PLA2 (IL-10) and Lys-49 PLA2 (TNF-α, IL-1ß, IL-10). Both increased MPO activity. Asp-49 PLA2 decreased Glutathione (GSH) and increased nitrite levels, while Lys-49 PLA2 increased Malondialdehyde (MDA), GSH and nitrite levels. Histological analysis of the perfused kidneys revealed the presence of glomerular degeneration and atrophy, deposit of proteinaceous material in Bowman's space and intratubular with both PLA2s. These findings indicated that both PLA2s modified the functional parameters in an isolated perfused kidney model with increased oxidative stress and cytokine release. PLA2s are one of the components at high concentration in BpV and our results provide important knowledge about their involvement with the nephrotoxic mechanism.


Assuntos
Injúria Renal Aguda/metabolismo , Venenos de Crotalídeos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosfolipases A2/metabolismo , Animais , Bothrops , Citocinas , Rim , Glomérulos Renais , Ratos , Venenos de Serpentes
5.
Int J Antimicrob Agents ; 56(3): 106119, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32738306

RESUMO

Coronavirus disease 2019 (COVID-19) is a highly transmissible viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical trials have reported improved outcomes resulting from an effective reduction or absence of viral load when patients were treated with chloroquine (CQ) or hydroxychloroquine (HCQ). In addition, the effects of these drugs were improved by simultaneous administration of azithromycin (AZM). The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein binds to the cell surface angiotensin-converting enzyme 2 (ACE2) receptor, allowing virus entry and replication in host cells. The viral main protease (Mpro) and host cathepsin L (CTSL) are among the proteolytic systems involved in SARS-CoV-2 S protein activation. Hence, molecular docking studies were performed to test the binding performance of these three drugs against four targets. The findings showed AZM affinity scores (ΔG) with strong interactions with ACE2, CTSL, Mpro and RBD. CQ affinity scores showed three low-energy results (less negative) with ACE2, CTSL and RBD, and a firm bond score with Mpro. For HCQ, two results (ACE2 and Mpro) were firmly bound to the receptors, however CTSL and RBD showed low interaction energies. The differences in better interactions and affinity between HCQ and CQ with ACE2 and Mpro were probably due to structural differences between the drugs. On other hand, AZM not only showed more negative (better) values in affinity, but also in the number of interactions in all targets. Nevertheless, further studies are needed to investigate the antiviral properties of these drugs against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Azitromicina/química , Betacoronavirus/química , Catepsina L/química , Cloroquina/química , Cisteína Endopeptidases/química , Hidroxicloroquina/química , Peptidil Dipeptidase A/química , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Azitromicina/farmacologia , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Cloroquina/farmacologia , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Hidroxicloroquina/farmacologia , Simulação de Acoplamento Molecular , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Termodinâmica , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Ligação Viral/efeitos dos fármacos
6.
Toxicon ; 181: 45-52, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339535

RESUMO

The Micrurus snake venoms mainly cause systemic complications, essentially neurotoxicity. Previous studies, however, have described that they are involved in the occurrence of acute kidney injury (AKI) in animal models. AKI pathogenesis in snakebites is multifactorial and involves immunological reactions, hemodynamic disturbances, and direct nephrotoxicity. The aim of this study was to compare the nephrotoxic effects of coral snake venoms from M. browni (MbV) and M. laticollaris (MlV) on the proximal tubular epithelial cell line (LLC-MK2) and isolated perfused kidney. Using an MTT assay, both venoms significantly reduced cell viability at higher concentrations (25-100 µg/mL). MlV (10 µg/mL) increased the perfusion pressure (PP) at 60, 90 and 120 min, while the MbV did it only at 90 and 120 min. Renal vascular resistance (RVR) decreased at 60 min and increased at 120 min with MbV, but decreased at 60, 90 and 120 min with MlV. Urinary flow (UF) alterations were not observed with MlV, but MbV elevated them at 90 and 120 min. Both venoms significantly decreased the glomerular filtration rate (GFR), %TNa+, %TK+ and %TCl- levels as of 60 min of perfusion. Oxidative stress analysis revealed that both venoms behaved similarly, reducing glutathione and increasing malondialdehyde levels. Kidney injury is not usually described in clinical cases of Micrurus snakebites. However, the potential for nephrotoxicity should be considered in the overall picture of envenomation.


Assuntos
Injúria Renal Aguda/etiologia , Cobras Corais , Mordeduras de Serpentes/complicações , Animais , Taxa de Filtração Glomerular , Túbulos Renais , México , Venenos de Serpentes , Resistência Vascular
7.
Toxicon ; 137: 144-149, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760509

RESUMO

This study have analyzed the pulmonary function in an experimental model of acute lung injury, induced by the Crotalus durissus cascavella venom (C. d. cascavella) (3.0 µg/kg - i.p), in pulmonary mechanic and histology at 1 h, 3 h, 6 h, 12 h and 24 h after inoculation. The C. d. cascavella venom led to an increase in Newtonian Resistance (RN), Tissue Resistance (G) and Tissue Elastance (H) in all groups when compared to the control, particularly at 12 h and 24 h. The Histeresivity (η) increased 6 h, 12 h and 24 h after inoculation. There was a decrease in Static Compliance (CST) at 6 h, 12 h and 24 h and inspiratory capacity (IC) at 3 h, 6 h, 12 h and 24 h. C. d. cascavella venom showed significant morphological changes such as atelectasis, emphysema, hemorrhage, polymorphonuclear inflammatory infiltrate, edema and congestion. After a challenge with methacholine (MCh), RN demonstrated significant changes at 6, 12 and 24 h. This venom caused mechanical and histopathological changes in the lung tissue; however, its mechanisms of action need further studies in order to better elucidate the morphofunctional lesions.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Venenos de Crotalídeos/toxicidade , Crotalus , Pulmão/efeitos dos fármacos , Mecânica Respiratória/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Cloreto de Metacolina/farmacologia , Camundongos Endogâmicos BALB C , Testes de Função Respiratória
8.
Toxicon ; 125: 84-90, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27867094

RESUMO

Components from animal venoms may vary according to the snake's age, gender and region of origin. Recently, we performed a proteomic analysis of Bothrops jararaca venom from southern (BjSv) and southeastern (BjSEv) Brazil, showing differences in the venom composition, as well as its biological activity. To continue the study, we report in this short communication the different effects induced by the BjSEv and BjSv on isolated kidney and MDCK renal cells. BjSEv decreased perfusion pressure (PP) and renal vascular resistance (RVR) and increased urinary flow (UF) and glomerular filtration rate (GFR), while BjSv did not alter PP and RVR and reduced UF and GFR. Both types of venom, more expressively BjSEv, reduced %TNa+, %TK+ and %Cl-. In MDCK cells, the two types of venom showed cytotoxicity with IC50 of 1.22 µg/mL for BjSv and 1.18 µg/mL for BjSEv and caused different profiles of cell death, with BjSv being more necrotic. In conclusion, we suggest that BjSv is more nephrotoxic than BjSEv.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Rim/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Venenos de Crotalídeos/química , Cães , Técnicas In Vitro , Rim/patologia , Células Madin Darby de Rim Canino , Masculino , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA