Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Nucl Med ; 60(1): 142-149, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29903933

RESUMO

G8 is a benchtop integrated PET/CT scanner dedicated to high-sensitivity and high-resolution imaging of mice. This work characterizes its National Electrical Manufacturers Association NU 4-2008 performance where applicable and also assesses the basic imaging performance of the CT subsystem. Methods: The PET subsystem in G8 consists of 4 flat-panel detectors arranged in a boxlike geometry. Each panel consists of 2 modules of a 26 × 26 pixelated bismuth germanate scintillator array with individual crystals measuring 1.75 × 1.75 × 7.2 mm. The crystal arrays are coupled to multichannel photomultiplier tubes via a tapered, pixelated glass lightguide. A cone-beam CT scanner consisting of a MicroFocus x-ray source and a complementary metal oxide semiconductor detector provides anatomic information. Sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance, and the capability of performing phantom and mouse imaging were evaluated for the PET subsystem. Noise, dose level, contrast, and resolution were evaluated for the CT subsystem. Results: With an energy window of 350-650 keV, the peak sensitivity was 9.0% near the center of the field of view. The crystal energy resolution ranged from 15.0% to 69.6% in full width at half maximum (FWHM), with a mean of 19.3% ± 3.7%. The average intrinsic spatial resolution was 1.30 and 1.38 mm FWHM in the transverse and axial directions, respectively. The maximum-likelihood expectation maximization reconstructed image of a point source in air averaged 0.81 ± 0.11 mm FWHM. The peak noise-equivalent count rate for the mouse-sized phantom was 44 kcps for a total activity of 2.9 MBq (78 µCi), and the scatter fraction was 11%. For the CT subsystem, the value of the modulation transfer function at 10% was 2.05 cycles/mm. Conclusion: The overall performance demonstrates that the G8 can produce high-quality images for molecular imaging-based biomedical research.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Processamento de Imagem Assistida por Computador , Espalhamento de Radiação , Razão Sinal-Ruído
2.
J Nucl Med ; 52(5): 815-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21536929

RESUMO

UNLABELLED: An integrated ß-camera and microfluidic chip was developed that is capable of quantitative imaging of glycolysis radioassays using (18)F-FDG in small cell populations down to a single cell. This paper demonstrates that the integrated system enables digital control and quantitative measurements of glycolysis in B-Raf(V600E)-mutated melanoma cell lines in response to specific B-Raf inhibition. METHODS: The ß-camera uses a position-sensitive avalanche photodiode to detect charged particle-emitting probes within a microfluidic chip. The integrated ß-camera and microfluidic chip system was calibrated, and the linearity was measured using 4 different melanoma cell lines (M257, M202, M233, and M229). Microfluidic radioassays were performed with cell populations ranging from hundreds of cells down to a single cell. The M229 cell line has a homozygous B-Raf(V600E) mutation and is highly sensitive to a B-Raf inhibitor, PLX4032. A microfluidic radioassay was performed over the course of 3 days to assess the cytotoxicity of PLX4032 on cellular (18)F-FDG uptake. RESULTS: The ß-camera is capable of imaging radioactive uptake of (18)F-FDG in microfluidic chips. (18)F-FDG uptake for a single cell was measured using a radioactivity concentration of 37 MBq/mL during the radiotracer incubation period. For in vitro cytotoxicity monitoring, the ß-camera showed that exposure to 1 µM PLX4032 for 3 days decreased the (18)F-FDG uptake per cell in highly sensitive M229 cells, compared with vehicle controls. CONCLUSION: The integrated ß-camera and microfluidic chip can provide digital control of live cell cultures and allow in vitro quantitative radioassays for multiple samples simultaneously.


Assuntos
Partículas beta , Glicólise , Técnicas Analíticas Microfluídicas , Imagem Molecular/métodos , Integração de Sistemas , Transporte Biológico/efeitos dos fármacos , Calibragem , Linhagem Celular Tumoral , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Humanos , Indóis/farmacologia , Imagem Molecular/instrumentação , Radiometria , Análise de Célula Única , Sulfonamidas/farmacologia , Fatores de Tempo , Vemurafenib
3.
Mol Imaging Biol ; 13(5): 949-61, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20812031

RESUMO

PURPOSE: PETbox is a low cost bench top preclinical PET scanner dedicated to pharmacokinetic and pharmacodynamic mouse studies. A prototype system was developed at our institute, and this manuscript characterizes the performance of the prototype system. PROCEDURES: The PETbox detector consists of a 20 × 44 bismuth germanate crystal array with a thickness of 5 mm and cross-section size of 2.05 × 2.05 mm. Two such detectors are placed facing each other at a spacing of 5 cm, forming a dual-head geometry optimized for imaging mice. The detectors are kept stationary during the scan, making PETbox a limited angle tomography system. 3D images are reconstructed using a maximum likelihood and expectation maximization (ML-EM) method. The performance of the prototype system was characterized based on a modified set of the NEMA NU 4-2008 standards. RESULTS: In-plane image spatial resolution was measured to be an average of 1.53 mm full width at half maximum for coronal images and 2.65 mm for the anterior-posterior direction. The volumetric reconstructed resolution was below 8 mm(3) at most locations in the field of view (FOV). The sensitivity, scatter fraction, and noise equivalent count rate (NECR) were measured for different energy windows. With an energy window of 150 - 650 keV and a timing window of 20 ns optimized for mouse imaging, the peak absolute sensitivity was 3.99% at the center of FOV and a peak NECR of 20 kcps was achieved for a total activity of 3.2 MBq (86.8 µCi). Phantom and in vivo imaging studies were performed and demonstrated the utility of the system at low activity levels. The quantitation capabilities of the system were also characterized showing that despite the limited angle tomography, reasonably good quantification accuracy was achieved over a large dynamic range of activity levels. CONCLUSIONS: The presented results demonstrate the potential of this new tomograph for small animal imaging.


Assuntos
Tomografia por Emissão de Pósitrons/instrumentação , Animais , Funções Verossimilhança , Camundongos
4.
IEEE Trans Nucl Sci ; 55(5): 2541-2545, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25722497

RESUMO

The development of a prototype dual-modality optical and PET (OPET) small animal imaging tomograph is underway in the Crump Institute for Molecular Imaging at the University of California Los Angeles. OPET consists of a single ring of six detector modules with a diameter of 3.5 cm. Each detector has an 8 × 8 array of optically isolated BGO scintillators which are coupled to multichannel photomultiplier tubes and open on the front end. The system operates in either PET or optical mode and reconstructs the data sets as 3D tomograms. The detectors are capable of detecting both annihilation events (511 keV) from PET tracers as well as Single Photon Events (SPEs) (2-3 eV) from bioluminescence. Detector channels are readout using a custom multiplex readout scheme and then filtered in analog circuitry using either a γ-ray or SPE specific filter. Shaped pulses are sent to a Digital Signal Processing (DSP) unit for event processing. The DSP unit has 100 MHz Analog-to-Digital Converters on the front-end which send digitized samples to Field Programmable Gate Arrays which are programmed via user configurable algorithms to process PET coincidence events or bioluminescence SPEs. Information determined using DSP includes: event timing, energy determination-discrimination, position determination-lookup, and coincidence processing. Coincidence or SPE events are recorded to an external disk and minimal post processing is required prior to image reconstruction. Initial imaging results from a phantom filled with 18FDG solution and an optical pattern placed on the front end of a detector module in the vicinity of a SPE source are shown.

5.
Phys Med Biol ; 51(9): 2131-42, 2006 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-16625031

RESUMO

We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is approximately 2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach.


Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/métodos , Imagens de Fantasmas , Fotoquímica/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade
6.
Mol Imaging Biol ; 7(6): 393-402, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16261425

RESUMO

PURPOSE: The growing number of mouse and rat experiments, coupled with advances in small-animal imaging systems such as microPET, optical, microCAT, microMR, ultrasound and microSPECT, has necessitated a common technical center for imaging small animals. PROCEDURES: At the UCLA Crump Institute for Molecular Imaging, we have designed and built a facility to support the research interests of a wide range of investigators from multiple disciplines. Requirements to satisfy both research and regulatory oversight have been critically examined. Support is provided for investigator training, study scheduling, data acquisition, archiving, image display, and analysis. RESULTS: The center has been in operation for more than 18 months, supporting more than 13,000 individual imaging procedures. CONCLUSIONS: We have created a facility that maximizes our resource utilization while providing optimal investigator support, as well as the means to continually improve the quality and diversity of the science by integrating physical and biological sciences.


Assuntos
Academias e Institutos/tendências , Diagnóstico por Imagem , Arquitetura de Instituições de Saúde , Modelos Animais , Universidades , Animais , Agendamento de Consultas , Autorradiografia , California , Computadores , Abrigo para Animais , Internet , Camundongos , Tomografia por Emissão de Pósitrons , Ratos
7.
Phys Med Biol ; 48(11): 1519-37, 2003 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-12817935

RESUMO

MicroPET II is a second-generation animal PET scanner designed for high-resolution imaging of small laboratory rodents. The system consists of 90 scintillation detector modules arranged in three contiguous axial rings with a ring diameter of 16.0 cm and an axial length of 4.9 cm. Each detector module consists of a 14 x 14 array of lutetium oxyorthosilicate (LSO) crystals coupled to a multi-channel photomultiplier tube (MC-PMT) through a coherent optical fibre bundle. Each LSO crystal element measures 0.975 mm x 0.975 mm in cross section by 12.5 mm in length. A barium sulphate reflector material was used between LSO elements leading to a detector pitch of 1.15 mm in both axial and transverse directions. Fused optical fibre bundles were made from 90 microm diameter glass fibres with a numerical aperture of 0.56. Interstitial extramural absorber was added between the fibres to reduce optical cross talk. A charge-division readout circuit was implemented on printed circuit boards to decode the 196 crystals in each array from the outputs of the 64 anode signals of the MC-PMT. Electronics from Concorde Microsystems Inc. (Knoxville, TN) were used for signal amplification, digitization, event qualification, coincidence processing and data capture. Coincidence data were passed to a host PC that recorded events in list mode. Following acquisition, data were sorted into sinograms and reconstructed using Fourier rebinning and filtered hackprojection algorithms. Basic evaluation of the system has been completed. The absolute sensitivity of the microPET II scanner was 2.26% at the centre of the field of view (CFOV) for an energy window of 250-750 keV and a timing window of 10 ns. The intrinsic spatial resolution of the detectors in the system averaged 1.21 mm full width at half maximum (FWHM) when measured with a 22Na point source 0.5 mm in diameter. Reconstructed image resolution ranged from 0.83 mm FWHM at the CFOV to 1.47 mm FWHM in the radial direction, 1.17 mm FWHM in the tangential direction and 1.42 mm FWHM in the axial direction at 1 cm offset from the CFOV. These values represent highly significant improvements over our earlier microPET scanner (approximately fourfold sensitivity increase and 25-35% improvement in linear spatial resolution under equivalent operating conditions) and are expected to be further improved when the system is fully optimized.


Assuntos
Osso e Ossos/diagnóstico por imagem , Análise de Falha de Equipamento , Coração/diagnóstico por imagem , Tomografia Computadorizada de Emissão/instrumentação , Transdutores , Animais , Estudos de Viabilidade , Camundongos , Miniaturização , Imagens de Fantasmas , Protoveratrinas , Controle de Qualidade , Ratos , Reprodutibilidade dos Testes , Contagem de Cintilação , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão/métodos
8.
Phys Med Biol ; 47(24): 4315-28, 2002 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-12539974

RESUMO

Non-invasive imaging technologies are opening up new windows into mouse biology. We have developed a mouse imaging system that integrates positron emission tomography (PET) with x-ray computed tomography (CT), allowing simultaneous anatomic and molecular imaging in vivo with the potential for precise registration of the two image volumes. The x-ray system consists of a compact mini-focal x-ray tube and an amorphous selenium flat panel x-ray detector with a low-noise CMOS readout. The PET system uses planar arrays of lutetium oxyorthosilicate scintillator coupled to position-sensitive photomultiplier tubes. We describe the design of this dual-modality imaging system and show, for the first time, simultaneously acquired PET and CT images in a phantom and in mice.


Assuntos
Técnica de Subtração/instrumentação , Tomografia Computadorizada de Emissão/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Animais , Osso e Ossos/diagnóstico por imagem , Desenho de Equipamento , Análise de Falha de Equipamento , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Aumento da Imagem/instrumentação , Rim/diagnóstico por imagem , Camundongos , Imagens de Fantasmas , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão/métodos , Tomografia Computadorizada por Raios X/métodos , Bexiga Urinária/diagnóstico por imagem , Contagem Corporal Total/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA