Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798359

RESUMO

Parkinson's disease (PD) is marked by degeneration in the nigrostriatal dopaminergic pathway, affecting motor control via complex changes in the cortico-basal ganglia-thalamic motor network, including the primary motor cortex (M1). The modulation of M1 neuronal activity by dopaminergic inputs, particularly from the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), plays a crucial role in PD pathophysiology. This study investigates how nigrostriatal dopaminergic degeneration influences M1 neuronal activity in rats using in vivo calcium imaging. Histological analysis confirmed dopaminergic lesion severity, with high lesion level rats showing significant motor deficits. Levodopa treatment improved fine motor abilities, particularly in high lesion level rats. Analysis of M1 calcium signals based on dopaminergic lesion severity revealed distinct M1 activity patterns. Animals with low dopaminergic lesion showed increased calcium events, while high lesion level rats exhibited decreased activity, partially restored by levodopa. These findings suggest that M1 activity is more sensitive to transient fluctuations in dopaminergic transmission, rather than to chronic high or low dopaminergic signaling. This study underscores the complex interplay between dopaminergic signaling and M1 neuronal activity in PD symptoms development. Further research integrating behavioral and calcium imaging data can elucidate mechanisms underlying motor deficits and therapeutic responses in PD.

2.
J Integr Neurosci ; 23(4): 84, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38682230

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition. Managing anxiety in PD is critical for improving the patients' quality of life. However, patients undergoing STN DBS can occasionally experience increased anxiety. METHODS: This study investigates changes in risk-avoidant behavior following STN DBS in a pre-motor animal model of PD under chronic and acute unilateral high frequency stimulation. RESULTS: No significant changes in risk-avoidant behaviors were observed in rats who underwent STN DBS compared with sham stimulation controls. Chronic stimulation prevented sensitization in the elevated zero maze. CONCLUSIONS: These results suggest that unilateral stimulation of the STN may have minimal effects on risk-avoidant behaviors in PD. However, additional research is required to fully understand the mechanisms responsible for changes in anxiety during STN DBS for PD.


Assuntos
Estimulação Encefálica Profunda , Modelos Animais de Doenças , Oxidopamina , Núcleo Subtalâmico , Animais , Oxidopamina/farmacologia , Masculino , Comportamento Animal/fisiologia , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/fisiopatologia , Ansiedade/etiologia , Ansiedade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Aprendizagem da Esquiva/fisiologia , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia
3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373396

RESUMO

The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50-120 cells/mm2 in all conditions), scarring (5-10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10-20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.


Assuntos
Organofosfonatos , Traumatismos da Medula Espinal , Ratos , Animais , Hidrogéis/química , Organofosfonatos/metabolismo , Cicatriz/patologia , Ratos Sprague-Dawley , Regeneração Nervosa , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Axônios/patologia , Alicerces Teciduais/química
4.
NPJ Regen Med ; 6(1): 66, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671050

RESUMO

Here, we report the effect of newly regenerated axons via scaffolds on reorganization of spinal circuitry and restoration of motor functions with epidural electrical stimulation (EES). Motor recovery was evaluated for 7 weeks after spinal transection and following implantation with scaffolds seeded with neurotrophin producing Schwann cell and with rapamycin microspheres. Combined treatment with scaffolds and EES-enabled stepping led to functional improvement compared to groups with scaffold or EES, although, the number of axons across scaffolds was not different between groups. Re-transection through the scaffold at week 6 reduced EES-enabled stepping, still demonstrating better performance compared to the other groups. Greater synaptic reorganization in the presence of regenerated axons was found in group with combined therapy. These findings suggest that newly regenerated axons through cell-containing scaffolds with EES-enabled motor training reorganize the sub-lesional circuitry improving motor recovery, demonstrating that neuroregenerative and neuromodulatory therapies cumulatively enhancing motor function after complete SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA