Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Pharmacol ; 946: 175579, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914083

RESUMO

Pulmonary hypertension (PH) is associated with pulmonary vasoconstriction and endothelial dysfunction leading to impaired nitric oxide (NO) and prostacyclin (PGI2) pathways. Metformin, the first line treatment for type 2 diabetes and AMP-activated protein kinase (AMPK) activator, has been recently highlighted as a potential PH treatment. AMPK activation has been reported to improve endothelial function by enhancing endothelial NO synthase (eNOS) activity and to have relaxant effects in blood vessels. In this study, we examined the effect of metformin treatment on PH as well as on NO and PGI2 pathways in monocrotaline (MCT)-injected rats with established PH. Moreover, we investigated the anti-contractile effects of AMPK activators on endothelium-denuded human pulmonary arteries (HPA) from Non-PH and Group 3 PH patients (due to lung diseases and/or hypoxia). Furthermore, we explored the interaction between treprostinil and the AMPK/eNOS pathway. Our results showed that metformin protected against PH progression in MCT rats where it reduced the mean pulmonary artery pressure, pulmonary vascular remodeling and right ventricular hypertrophy and fibrosis compared to vehicle-treated MCT rats. The protective effects on rat lungs were mediated in part by increasing eNOS activity and protein kinase G-1 expression but not through the PGI2 pathway. In addition, incubation with AMPK activators reduced the phenylephrine-induced contraction of endothelium-denuded HPA from Non-PH and PH patients. Finally, treprostinil also augmented eNOS activity in HPA smooth muscle cells. In conclusion, we found that AMPK activation can enhance the NO pathway, attenuate vasoconstriction by direct effects on smooth muscles, and reverse established MCT-induced PH in rats.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão Pulmonar , Metformina , Ratos , Humanos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/prevenção & controle , Artéria Pulmonar , Metformina/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Monocrotalina/efeitos adversos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34403986

RESUMO

INTRODUCTION: Prostacyclin (PGI2) is synthetized by PGI2 synthase (PGIS) and induces vasorelaxation via activation of cyclic AMP (cAMP) generating IP-receptor. Several components of the PGI2 signaling pathway are reduced in patients with pulmonary hypertension (PH). AIM: To study the effect of 17ß-estradiol (E2) on the PGI2 signaling pathway in human pulmonary arteries (HPA) and in their smooth muscle cells (hPASMC) derived from Group-3 PH and non-PH patients. METHODS: Following E2-treatments of isolated HPA and cultured hPASMC, we measured: 6-keto-Prostaglandin F1α (PGI2 stable metabolite) by ELISA, PGIS and IP protein levels by Western blot and HPA vasorelaxations with an organ bath system. RESULTS: Incubation with E2 (24/48 h, doses ≥ 10 nM) significantly increased the expression of PGIS in hPASMC derived from both PH (65-98%) and non-PH (21-33%) patients, whereas incubation with E2 (2 h, 0.1 and 1 µM) increased 6-keto-PGF1α production in HPA from Group-3 PH patients only, and did not affect 6-keto-PGF1α production in hPASMC from either non-PH or Group-3 PH patients. Increases in IP receptor expression were observed following 10 mM E2-treatment of hPASMC from non-PH (33% after 48 h) and Group-3 PH (23% after 24 h) patient lungs. Finally, preincubation with 100 nM E2 significantly increased arachidonic acid-induced vasorelaxation of HPA from non-PH patient lungs but not of HPA from Group-3 PH patient lungs. CONCLUSION: E2-treatment may help to restore the PGI2-pathway in Group-3 PH.


Assuntos
6-Cetoprostaglandina F1 alfa/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Hipertensão Pulmonar/metabolismo , Oxirredutases Intramoleculares/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Anti-Hipertensivos/farmacologia , Ácido Araquidônico/farmacologia , Estudos de Casos e Controles , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Feminino , Humanos , Hipertensão Pulmonar/fisiopatologia , Oxirredutases Intramoleculares/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32673988

RESUMO

Pulmonary hypertension (PH) is a progressive and life-threating lung disorder characterized by elevated pulmonary artery pressure and vascular remodeling. PH is classified into five groups, and one of the most common and lethal forms, PH Group-III is defined as PH due to lung diseases and/or hypoxia. Due to the lack of studies in this group, PH-specific drug therapies including prostacyclin (PGI2) analogues have not been approved or recommended for use in these patients. PGI2 is synthesized by the PGI2 synthase (PGIS) enzyme, and its production is determined by measuring its stable metabolite, 6-keto-PGF1α. An impaired PGI2 pathway has been observed in PH animal models and in PH Group-I patients; however, there are contradictory results. The aim of this study is to determine whether PH Group-III is associated with altered expression of PGIS and production of PGI2 in humans. To explore this hypothesis, we measured PGIS expression (by western blot) and PGI2 production (by ELISA) in a large variety of preparations from the pulmonary circulation including human pulmonary artery, pulmonary vein, distal lung tissue, pulmonary artery smooth muscle cells (hPASMC), and bronchi in PH Group-III (n = 35) and control patients (n = 32). Our results showed decreased PGIS expression and/or 6-keto-PGF1α levels in human pulmonary artery, hPASMC, and distal lung tissue derived from PH Group-III patients. Moreover, the production of 6-keto-PGF1α from hPASMC positively correlated with PGIS expression and was inversely correlated with mean pulmonary artery pressure. On the other hand, PH Group-III pulmonary veins and bronchi did not show altered PGI2 production compared to controls. The deficit in PGIS expression and/or PGI2 production observed in pulmonary artery and distal lung tissue in PH Group-III patients may have important implications in the pathogenesis and treatment of PH Group-III.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Epoprostenol/metabolismo , Hipertensão Pulmonar/metabolismo , Oxirredutases Intramoleculares/metabolismo , Artéria Pulmonar/metabolismo , Brônquios/enzimologia , Brônquios/metabolismo , Hipóxia Celular/fisiologia , Células Cultivadas , Dinoprosta/metabolismo , Regulação para Baixo , Feminino , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/enzimologia , Pulmão/metabolismo , Masculino , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/enzimologia , Veias Pulmonares/enzimologia , Veias Pulmonares/metabolismo
4.
Br J Pharmacol ; 177(1): 161-174, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31476020

RESUMO

BACKGROUND AND PURPOSE: In patients with pulmonary hypertension (PH) associated with lung disease and/or hypoxia (Group III), decreased pulmonary vascular tone and tissue hypoxia is therapeutically beneficial. PGE2 and PGI2 induce potent relaxation of human bronchi from non-PH (control) patients via EP4 and IP receptors, respectively. However, the effects of PGE2 /PGI2 and their mimetics on human bronchi from PH patients are unknown. Here, we have compared relaxant effects of several PGI2 -mimetics approved for treating PH Group I with several PGE2 -mimetics, in bronchial preparations derived from PH Group III and control patients. EXPERIMENTAL APPROACH: Relaxation of bronchial muscle was assessed in samples isolated from control and PH Group III patients. Expression of prostanoid receptors was analysed by western blot and real-time PCR, and endogenous PGE2 , PGI2 , and cAMP levels were determined by ELISA. KEY RESULTS: Maximal relaxations induced by different EP4 receptor agonists (PGE2 , L-902688, and ONO-AE1-329) were decreased in human bronchi from PH patients, compared with controls. However, maximal relaxations produced by PGI2 -mimetics (iloprost, treprostinil, and beraprost) were similar for both groups of patients. Both EP4 and IP receptor protein and mRNA expressions were significantly lower in human bronchi from PH patients. cAMP levels significantly correlated with PGI2 but not with PGE2 levels. CONCLUSION AND IMPLICATIONS: The PGI2 -mimetics retained maximal bronchodilation in PH Group III patients, whereas bronchodilation induced by EP4 receptor agonists was decreased. Restoration of EP4 receptor expression in airways of PH Group III patients with respiratory diseases could bring additional therapeutic benefit.


Assuntos
Brônquios/metabolismo , Broncodilatadores/metabolismo , Broncodilatadores/uso terapêutico , Dinoprostona/metabolismo , Dinoprostona/uso terapêutico , Hipertensão Pulmonar/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Brônquios/efeitos dos fármacos , Brônquios/patologia , Broncodilatadores/farmacologia , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , Epoprostenol/análogos & derivados , Epoprostenol/metabolismo , Epoprostenol/farmacologia , Epoprostenol/uso terapêutico , Feminino , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Iloprosta/metabolismo , Iloprosta/farmacologia , Iloprosta/uso terapêutico , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Tetrazóis/metabolismo , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Vasodilatadores/metabolismo , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico , Adulto Jovem
5.
Prostaglandins Other Lipid Mediat ; 146: 106388, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31672620

RESUMO

Pulmonary hypertension (PH) is characterized by an elevation of mean pulmonary artery pressure and it is classified into five groups. Among these groups, PH Group-III is defined as PH due to lung disease or hypoxia. Prostacyclin (PGI2) analogues (iloprost, treprostinil) and endothelin-1 (ET-1) receptor antagonists (ERA) (used alone or in combination) are therapies used for treating PH. The mechanisms underlying the positive/negative effects of combination treatment are not well documented, and in this study, we tested the hypothesis that the combination of a PGI2 analogue (iloprost, treprostinil) and an ERA may be more effective than either drug alone to treat vasculopathies observed in PH Group-III patients. Using Western blotting, ETA and ETB receptor expression were determined in human pulmonary artery (HPA) preparations derived from control and PH Group-III patients, and the physiologic impact of altered expression ratios was assessed by measuring ET-1 induced contraction of ex vivo HPA and human pulmonary veins (HPV) in an isolated organ bath system. In addition, the effects of single agent or combination treatments with a PGI2 analogue and an ERA on ET-1 release and HPA smooth muscle cells (hPASMCs) proliferation were determined by ELISA and MTT techniques, respectively. Our results indicate that the increased ETA/ETB receptor expression ratio in HPA derived from PH Group-III patients is primarily governed by a greatly depressed ETB receptor expression. However, contractions induced by ET-1 are not impacted in HPA and HPV derived from PH Group-III patients as compared to controls. Also, we found that the combination of an ETA receptor antagonist (BQ123) with iloprost provides greater inhibition of hPASMCs proliferation (-48±14% control; -32±06% PH) than either agent alone. Of note, while the ETB receptor antagonist (BQ788) increases ET-1 production from PH Group-III patients' preparations (HPA, parenchyma), even under these more proliferative conditions, iloprost and treprostinil are still effective to inhibit hPASMCs proliferation (-22/-24%). Our findings may provide new insights for the treatment of PH Group-III by combining a PGI2 analogue and a selective ETA receptor antagonist.


Assuntos
Endotelina-1/metabolismo , Epoprostenol/metabolismo , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Idoso , Endotelina-1/farmacologia , Epoprostenol/farmacologia , Feminino , Humanos , Hipertensão Pulmonar/patologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Veias Pulmonares/metabolismo , Veias Pulmonares/patologia , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo
6.
Int J Mol Sci ; 19(8)2018 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103548

RESUMO

Prostacyclins are extensively used to treat pulmonary arterial hypertension (PAH), a life-threatening disease involving the progressive thickening of small pulmonary arteries. Although these agents are considered to act therapeutically via the prostanoid IP receptor, treprostinil is the only prostacyclin mimetic that potently binds to the prostanoid EP2 receptor, the role of which is unknown in PAH. We hypothesised that EP2 receptors contribute to the anti-proliferative effects of treprostinil in human pulmonary arterial smooth muscle cells (PASMCs), contrasting with selexipag, a non-prostanoid selective IP agonist. Human PASMCs from PAH patients were used to assess prostanoid receptor expression, cell proliferation, and cyclic adenosine monophosphate (cAMP) levels following the addition of agonists, antagonists or EP2 receptor small interfering RNAs (siRNAs). Immunohistochemical staining was performed in lung sections from control and PAH patients. We demonstrate using selective IP (RO1138452) and EP2 (PF-04418948) antagonists that the anti-proliferative actions of treprostinil depend largely on EP2 receptors rather than IP receptors, unlike MRE-269 (selexipag-active metabolite). Likewise, EP2 receptor knockdown selectively reduced the functional responses to treprostinil but not MRE-269. Furthermore, EP2 receptor levels were enhanced in human PASMCs and in lung sections from PAH patients compared to controls. Thus, EP2 receptors represent a novel therapeutic target for treprostinil, highlighting key pharmacological differences between prostacyclin mimetics used in PAH.


Assuntos
Proliferação de Células/efeitos dos fármacos , Epoprostenol/análogos & derivados , Hipertensão Pulmonar/tratamento farmacológico , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Prostaglandina E Subtipo EP2/biossíntese , Regulação para Cima/efeitos dos fármacos , Adolescente , Adulto , Criança , Epoprostenol/farmacologia , Feminino , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Sistemas do Segundo Mensageiro/efeitos dos fármacos
7.
Biochem Pharmacol ; 84(1): 68-75, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22480736

RESUMO

The prostacyclin analogues, iloprost and treprostinil are extensively used in treating pulmonary hypertension. Their binding profile and corresponding biochemical cellular responses on human prostanoid receptors expressed in cell lines, have now been compared. Iloprost had high binding affinity for EP1 and IP receptors (Ki 1.1 and 3.9 nM, respectively), low affinity for FP, EP3 or EP4 receptors, and very low affinity for EP2, DP1 or TP receptors. By contrast, treprostinil had high affinity for the DP1, EP2 and IP receptors (Ki 4.4, 3.6 and 32 nM, respectively), low affinity for EP1 and EP4 receptors and even lower affinity for EP3, FP and TP receptors. In functional assays, iloprost had similar high activity in elevating cyclic AMP levels in cells expressing the human IP receptor and stimulating calcium influx in cells expressing EP1 receptors (EC50 0.37 and 0.3 nM, respectively) with the rank order of activity on the other receptors comparable to the binding assays. As with binding studies, treprostinil elevated cyclic AMP with a similar high potency in cells expressing DP1, IP and EP2 receptors (EC50 0.6, 1.9 and 6.2 nM, respectively), but had low activity at the other receptors. Activation of IP, DP1 and EP2 receptors, as with treprostinil, can all result in vasodilatation of human pulmonary arteries. However, activation of EP1 receptors can provoke vasoconstriction, and hence may offset the IP-receptor mediated vasodilator effects of iloprost. Treprostinil may therefore differ from iloprost in its overall beneficial pulmonary vasorelaxant profile and other pharmacological actions, especially in diseases where the IP receptor is down-regulated.


Assuntos
Anti-Hipertensivos/farmacologia , Epoprostenol/análogos & derivados , Iloprosta/farmacologia , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina/agonistas , Anti-Hipertensivos/uso terapêutico , Ligação Competitiva , Cálcio/metabolismo , Técnicas de Cultura de Células , AMP Cíclico/metabolismo , Epoprostenol/farmacologia , Epoprostenol/uso terapêutico , Células HEK293 , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Iloprosta/uso terapêutico , Ensaio Radioligante , Receptores de Epoprostenol , Receptores de Prostaglandina/genética , Receptores de Prostaglandina E Subtipo EP2/genética , Transfecção
8.
Mol Cell Proteomics ; 6(2): 319-32, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17121811

RESUMO

Members of the B56 family of protein phosphatase 2A (PP2A) regulatory subunits play crucial roles in Drosophila cell survival. Distinct functions of two B56 subunits were investigated using a combination of RNA interference, DNA microarrays, and proteomics. RNA interference-mediated knockdown of the B56-1 subunit (PP2A-B') but not the catalytic (mts) or B56-2 subunit (wdb) of PP2A resulted in increased expression of the apoptotic inducers reaper and sickle. Co-knockdown of B56-1 with reaper, but not with sickle, reduced the apoptosis caused by depletion of the B56 subunits. Two-dimensional gel electrophoresis and mass spectrometry identified proteins modified in cells depleted of PP2A subunits. These included generation of caspase-dependent cleavage products, increases in protein abundance, and covalent modifications. Results suggested that up-regulation of the ribosome-associated protein stubarista can serve as a sensitive marker of apoptosis. Up-regulation of transcripts for multiple glutathione transferases and other proteins suggested that loss of PP2A affected pathways involved in the response to oxidative stress. Knockdown of PP2A elevated basal JNK activity and substantially decreased activation of ERK in response to oxidative stress. The results reveal that the B56-containing isoform of PP2A functions within multiple signaling pathways, including those that regulate expression of reaper and the response to oxidative stress, thus promoting cell survival in Drosophila.


Assuntos
Drosophila melanogaster/enzimologia , Regulação Enzimológica da Expressão Gênica , Genoma de Inseto , Genômica/métodos , Fosfoproteínas Fosfatases/metabolismo , Animais , Apoptose , Linhagem Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Fosfoproteínas Fosfatases/genética , Isoformas de Proteínas , Proteína Fosfatase 2 , Proteômica , Interferência de RNA , Transdução de Sinais , Regulação para Cima
9.
Methods Enzymol ; 366: 361-72, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14674261

RESUMO

Double stranded RNA-mediated RNA interference is an effective method to downregulate the levels of protein phosphatases in Drosophila S2 cells. In many cases, nearly complete ablation of the targeted protein can be achieved. RNAi-mediated knockdown of protein phosphatases is akin to pharmacological inhibition with drugs and can be used to determine the roles of specific protein phosphatases in intact cells. RNAi can avoid the problems associated with less than adequate specificity of phosphatase inhibitors. Although information about the signaling pathways present in Drosophila S2 cells is not as well developed as many mammalian cell lines, the Drosophila system is particularly attractive for the study of oligomeric phosphatases like PP2A. Drosophila has far fewer isoforms for the phosphatases we have examined. This is especially true of the genes for PP2A regulatory subunits where over 50 isoforms are present in mammals but only four are present in Drosophila. Once hypotheses regarding phosphatase function have been generated from RNAi experiments in S2 cells, they can potentially be tested utilizing recent advances in the use of siRNAs to conduct RNAi experiments in mammalian cell lines. RNAi in Drosophila S2 cells has proven to be a powerful technique for identifying physiological functions of signaling proteins. The RNAi method is straightforward and works routinely with almost all proteins. RNAi in S2 cells can be used to assess the role of signaling proteins in specific pathways and as a screening tool to identify new roles for signaling molecules. For example, results from RNAi analysis of PP2A show that regulation of MAP kinase signaling involves the R2/B regulatory subunit and that the R5/B56 subunits play a previously unidentified role in apoptosis. While RNAi in Drosophila S2 cells is a powerful tool for analyzing protein function, the method does have limitations. Foremost, cells may exhibit an RNAi response to any nonspecific dsRNA, even in the absence of interferon. Therefore, physiological processes that respond to nonspecific dsRNA will be difficult to study. A second limitation is the need to produce antibodies that react with Drosophila isoforms. We have found that many antibodies to mammalian protein phosphatases do not cross-react with the corresponding Drosophila proteins. Finally, the physiology and signaling pathways of S2 cells have not been extensively studied. This lack of information limits the number of available readouts that can be used when assessing the effects of protein knockdowns.


Assuntos
Drosophila melanogaster/enzimologia , Fosfoproteínas Fosfatases/metabolismo , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular/métodos , Primers do DNA , DNA Complementar , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/enzimologia , Isoenzimas/genética , Isoenzimas/metabolismo , Mamíferos , Fosfoproteínas Fosfatases/genética , Reação em Cadeia da Polimerase , RNA de Cadeia Dupla/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção/métodos
10.
Proc Natl Acad Sci U S A ; 99(7): 4221-6, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11904383

RESUMO

Individual subunits of protein phosphatase 2A (PP2A), protein phosphatase 4, and protein phosphatase 5 were knocked out in Drosophila Schneider 2 cells by using RNA interference. Ablation of either the scaffold (A) or catalytic (C) subunits of PP2A caused the disappearance of all PP2A subunits. Treating cells with double-stranded RNA targeting all four of the Drosophila PP2A regulatory subunits caused the disappearance of both the A and C subunits. The loss of PP2A subunits was associated with decreased protein stability indicating that only the heterotrimeric forms of PP2A are stable in intact cells. Ablation of total PP2A by using double-stranded RNA against either the A or C subunit, or specific ablation of the R2/B regulatory subunit, enhanced insulin-induced ERK activation. These results indicated that the R2/B subunit targets PP2A to the mitogen-activated protein (MAP) kinase cascade in Schneider 2 cells, where it acts as a negative regulator. A severe loss of viability occurred in cells in which total PP2A or both isoforms of the Drosophila R5/B56 subunit had been ablated. The reduced viability of these cells correlated with the induction of markers of apoptosis including membrane blebbing and stimulation of caspase-3-like activity. These observations indicated that PP2A has a powerful antiapoptotic activity that is specifically mediated by the R5/B56 regulatory subunits. In contrast to PP2A, ablation of protein phosphatase 4 caused only a slight reduction in cell growth but had no effect on MAP kinase signaling or apoptosis. Depletion of protein phosphatase 5 had no effects on MAP kinase, cell growth, or apoptosis.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Animais , Células Cultivadas , Drosophila , Ativação Enzimática , Fosfoproteínas Fosfatases/química , Proteína Fosfatase 2 , Subunidades Proteicas , RNA de Cadeia Dupla/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA